Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3hv Structured version   Visualization version   Unicode version

Theorem cbv3hv 2080
 Description: Version of cbv3h 2122 with a dv condition on , which does not require ax-13 2104. Was used in a proof of axc11n 2157 (but of independent interest). (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 29-Nov-2020.) (Proof shortened by BJ, 30-Nov-2020.)
Hypotheses
Ref Expression
cbv3hv.nf1
cbv3hv.nf2
cbv3hv.1
Assertion
Ref Expression
cbv3hv
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbv3hv
StepHypRef Expression
1 cbv3hv.nf1 . . 3
21nfi 1682 . 2
3 cbv3hv.nf2 . . 3
43nfi 1682 . 2
5 cbv3hv.1 . 2
62, 4, 5cbv3v 2078 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-ex 1672  df-nf 1676 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator