Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3h Structured version   Visualization version   Unicode version

Theorem cbv3h 2122
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 8-Jun-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
Hypotheses
Ref Expression
cbv3h.1
cbv3h.2
cbv3h.3
Assertion
Ref Expression
cbv3h

Proof of Theorem cbv3h
StepHypRef Expression
1 cbv3h.1 . . 3
21nfi 1682 . 2
3 cbv3h.2 . . 3
43nfi 1682 . 2
5 cbv3h.3 . 2
62, 4, 5cbv3 2121 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator