MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caussi Structured version   Unicode version

Theorem caussi 21862
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
caussi  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  ( D  |`  ( Y  X.  Y
) ) )  C_  ( Cau `  D ) )

Proof of Theorem caussi
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3714 . . . . . . . . 9  |-  ( X  i^i  Y )  C_  X
2 xpss2 5121 . . . . . . . . 9  |-  ( ( X  i^i  Y ) 
C_  X  ->  ( CC  X.  ( X  i^i  Y ) )  C_  ( CC  X.  X ) )
31, 2ax-mp 5 . . . . . . . 8  |-  ( CC 
X.  ( X  i^i  Y ) )  C_  ( CC  X.  X )
4 sstr 3507 . . . . . . . 8  |-  ( ( f  C_  ( CC  X.  ( X  i^i  Y
) )  /\  ( CC  X.  ( X  i^i  Y ) )  C_  ( CC  X.  X ) )  ->  f  C_  ( CC  X.  X ) )
53, 4mpan2 671 . . . . . . 7  |-  ( f 
C_  ( CC  X.  ( X  i^i  Y ) )  ->  f  C_  ( CC  X.  X
) )
65anim2i 569 . . . . . 6  |-  ( ( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) )  ->  ( Fun  f  /\  f  C_  ( CC  X.  X ) ) )
76a1i 11 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) )  ->  ( Fun  f  /\  f  C_  ( CC  X.  X
) ) ) )
8 elfvdm 5898 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
9 inex1g 4599 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( X  i^i  Y
)  e.  _V )
108, 9syl 16 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  e. 
_V )
11 cnex 9590 . . . . . 6  |-  CC  e.  _V
12 elpmg 7453 . . . . . 6  |-  ( ( ( X  i^i  Y
)  e.  _V  /\  CC  e.  _V )  -> 
( f  e.  ( ( X  i^i  Y
)  ^pm  CC )  <->  ( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) ) ) )
1310, 11, 12sylancl 662 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( ( X  i^i  Y ) 
^pm  CC )  <->  ( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) ) ) )
14 elpmg 7453 . . . . . 6  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( f  e.  ( X  ^pm  CC ) 
<->  ( Fun  f  /\  f  C_  ( CC  X.  X ) ) ) )
158, 11, 14sylancl 662 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( X 
^pm  CC )  <->  ( Fun  f  /\  f  C_  ( CC  X.  X ) ) ) )
167, 13, 153imtr4d 268 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( ( X  i^i  Y ) 
^pm  CC )  ->  f  e.  ( X  ^pm  CC ) ) )
17 uzid 11120 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  ( ZZ>= `  y )
)
1817adantl 466 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  ->  y  e.  (
ZZ>= `  y ) )
19 simp2 997 . . . . . . . . . 10  |-  ( ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  -> 
( f `  z
)  e.  ( X  i^i  Y ) )
2019ralimi 2850 . . . . . . . . 9  |-  ( A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  ->  A. z  e.  ( ZZ>=
`  y ) ( f `  z )  e.  ( X  i^i  Y ) )
21 fveq2 5872 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
f `  z )  =  ( f `  y ) )
2221eleq1d 2526 . . . . . . . . . 10  |-  ( z  =  y  ->  (
( f `  z
)  e.  ( X  i^i  Y )  <->  ( f `  y )  e.  ( X  i^i  Y ) ) )
2322rspcva 3208 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= `  y )  /\  A. z  e.  ( ZZ>= `  y ) ( f `
 z )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  ( X  i^i  Y
) )
2418, 20, 23syl2an 477 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x ) )  ->  ( f `  y )  e.  ( X  i^i  Y ) )
25 inss2 3715 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  Y
26 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  ( X  i^i  Y
) )
2725, 26sseldi 3497 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  Y )
2825a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  ( X  i^i  Y )  C_  Y )
2928sselda 3499 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
f `  z )  e.  Y )
30 simplr 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  Y )
3129, 30ovresd 6442 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
( f `  z
) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  =  ( ( f `
 z ) D ( f `  y
) ) )
3231breq1d 4466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x  <->  ( (
f `  z ) D ( f `  y ) )  < 
x ) )
3332biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x  ->  (
( f `  z
) D ( f `
 y ) )  <  x ) )
3433imdistanda 693 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( ( f `
 z )  e.  ( X  i^i  Y
)  /\  ( (
f `  z ) D ( f `  y ) )  < 
x ) ) )
351a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  ( X  i^i  Y )  C_  X )
3635sseld 3498 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( f `  z
)  e.  ( X  i^i  Y )  -> 
( f `  z
)  e.  X ) )
3736anim1d 564 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) D ( f `  y
) )  <  x
)  ->  ( (
f `  z )  e.  X  /\  (
( f `  z
) D ( f `
 y ) )  <  x ) ) )
3834, 37syld 44 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( ( f `
 z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  < 
x ) ) )
3927, 38syldan 470 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( ( f `
 z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  < 
x ) ) )
4039anim2d 565 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
( z  e.  dom  f  /\  ( ( f `
 z )  e.  ( X  i^i  Y
)  /\  ( (
f `  z )
( D  |`  ( Y  X.  Y ) ) ( f `  y
) )  <  x
) )  ->  (
z  e.  dom  f  /\  ( ( f `  z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) ) )
41 3anass 977 . . . . . . . . . . 11  |-  ( ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  <->  ( z  e.  dom  f  /\  (
( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) ) )
42 3anass 977 . . . . . . . . . . 11  |-  ( ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x )  <-> 
( z  e.  dom  f  /\  ( ( f `
 z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  < 
x ) ) )
4340, 41, 423imtr4g 270 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( z  e. 
dom  f  /\  (
f `  z )  e.  X  /\  (
( f `  z
) D ( f `
 y ) )  <  x ) ) )
4443ralimdv 2867 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  ( A. z  e.  ( ZZ>=
`  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  ->  A. z  e.  ( ZZ>=
`  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4544impancom 440 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x ) )  ->  ( (
f `  y )  e.  ( X  i^i  Y
)  ->  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4624, 45mpd 15 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x ) )  ->  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) )
4746ex 434 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  ->  ( A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  A. z  e.  (
ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4847reximdva 2932 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  ->  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4948ralimdv 2867 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
5016, 49anim12d 563 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( f  e.  ( ( X  i^i  Y
)  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) )  ->  ( f  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) ) )
51 xmetres 20993 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
52 iscau2 21842 . . . 4  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) )  ->  ( f  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  <-> 
( f  e.  ( ( X  i^i  Y
)  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) ) ) )
5351, 52syl 16 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  <->  ( f  e.  ( ( X  i^i  Y )  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) ) ) )
54 iscau2 21842 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  D )  <->  ( f  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) ) )
5550, 53, 543imtr4d 268 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  ->  f  e.  ( Cau `  D ) ) )
5655ssrdv 3505 1  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  ( D  |`  ( Y  X.  Y
) ) )  C_  ( Cau `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   class class class wbr 4456    X. cxp 5006   dom cdm 5008    |` cres 5010   Fun wfun 5588   ` cfv 5594  (class class class)co 6296    ^pm cpm 7439   CCcc 9507    < clt 9645   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   *Metcxmt 18530   Caucca 21818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-neg 9827  df-z 10886  df-uz 11107  df-rp 11246  df-xadd 11344  df-psmet 18538  df-xmet 18539  df-bl 18541  df-cau 21821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator