MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caussi Structured version   Unicode version

Theorem caussi 20939
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
caussi  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  ( D  |`  ( Y  X.  Y
) ) )  C_  ( Cau `  D ) )

Proof of Theorem caussi
Dummy variables  x  f  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3677 . . . . . . . . 9  |-  ( X  i^i  Y )  C_  X
2 xpss2 5056 . . . . . . . . 9  |-  ( ( X  i^i  Y ) 
C_  X  ->  ( CC  X.  ( X  i^i  Y ) )  C_  ( CC  X.  X ) )
31, 2ax-mp 5 . . . . . . . 8  |-  ( CC 
X.  ( X  i^i  Y ) )  C_  ( CC  X.  X )
4 sstr 3471 . . . . . . . 8  |-  ( ( f  C_  ( CC  X.  ( X  i^i  Y
) )  /\  ( CC  X.  ( X  i^i  Y ) )  C_  ( CC  X.  X ) )  ->  f  C_  ( CC  X.  X ) )
53, 4mpan2 671 . . . . . . 7  |-  ( f 
C_  ( CC  X.  ( X  i^i  Y ) )  ->  f  C_  ( CC  X.  X
) )
65anim2i 569 . . . . . 6  |-  ( ( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) )  ->  ( Fun  f  /\  f  C_  ( CC  X.  X ) ) )
76a1i 11 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) )  ->  ( Fun  f  /\  f  C_  ( CC  X.  X
) ) ) )
8 elfvdm 5824 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
9 inex1g 4542 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( X  i^i  Y
)  e.  _V )
108, 9syl 16 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  e. 
_V )
11 cnex 9473 . . . . . 6  |-  CC  e.  _V
12 elpmg 7337 . . . . . 6  |-  ( ( ( X  i^i  Y
)  e.  _V  /\  CC  e.  _V )  -> 
( f  e.  ( ( X  i^i  Y
)  ^pm  CC )  <->  ( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) ) ) )
1310, 11, 12sylancl 662 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( ( X  i^i  Y ) 
^pm  CC )  <->  ( Fun  f  /\  f  C_  ( CC  X.  ( X  i^i  Y ) ) ) ) )
14 elpmg 7337 . . . . . 6  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( f  e.  ( X  ^pm  CC ) 
<->  ( Fun  f  /\  f  C_  ( CC  X.  X ) ) ) )
158, 11, 14sylancl 662 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( X 
^pm  CC )  <->  ( Fun  f  /\  f  C_  ( CC  X.  X ) ) ) )
167, 13, 153imtr4d 268 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( ( X  i^i  Y ) 
^pm  CC )  ->  f  e.  ( X  ^pm  CC ) ) )
17 uzid 10985 . . . . . . . . . 10  |-  ( y  e.  ZZ  ->  y  e.  ( ZZ>= `  y )
)
1817adantl 466 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  ->  y  e.  (
ZZ>= `  y ) )
19 simp2 989 . . . . . . . . . 10  |-  ( ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  -> 
( f `  z
)  e.  ( X  i^i  Y ) )
2019ralimi 2818 . . . . . . . . 9  |-  ( A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  ->  A. z  e.  ( ZZ>=
`  y ) ( f `  z )  e.  ( X  i^i  Y ) )
21 fveq2 5798 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
f `  z )  =  ( f `  y ) )
2221eleq1d 2523 . . . . . . . . . 10  |-  ( z  =  y  ->  (
( f `  z
)  e.  ( X  i^i  Y )  <->  ( f `  y )  e.  ( X  i^i  Y ) ) )
2322rspcva 3175 . . . . . . . . 9  |-  ( ( y  e.  ( ZZ>= `  y )  /\  A. z  e.  ( ZZ>= `  y ) ( f `
 z )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  ( X  i^i  Y
) )
2418, 20, 23syl2an 477 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x ) )  ->  ( f `  y )  e.  ( X  i^i  Y ) )
25 inss2 3678 . . . . . . . . . . . . . 14  |-  ( X  i^i  Y )  C_  Y
26 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  ( X  i^i  Y
) )
2725, 26sseldi 3461 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  Y )
2825a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  ( X  i^i  Y )  C_  Y )
2928sselda 3463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
f `  z )  e.  Y )
30 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
f `  y )  e.  Y )
3129, 30ovresd 6340 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
( f `  z
) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  =  ( ( f `
 z ) D ( f `  y
) ) )
3231breq1d 4409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x  <->  ( (
f `  z ) D ( f `  y ) )  < 
x ) )
3332biimpd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  /\  (
f `  z )  e.  ( X  i^i  Y
) )  ->  (
( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x  ->  (
( f `  z
) D ( f `
 y ) )  <  x ) )
3433imdistanda 693 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( ( f `
 z )  e.  ( X  i^i  Y
)  /\  ( (
f `  z ) D ( f `  y ) )  < 
x ) ) )
351a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  ( X  i^i  Y )  C_  X )
3635sseld 3462 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( f `  z
)  e.  ( X  i^i  Y )  -> 
( f `  z
)  e.  X ) )
3736anim1d 564 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) D ( f `  y
) )  <  x
)  ->  ( (
f `  z )  e.  X  /\  (
( f `  z
) D ( f `
 y ) )  <  x ) ) )
3834, 37syld 44 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  Y )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( ( f `
 z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  < 
x ) ) )
3927, 38syldan 470 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
( ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( ( f `
 z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  < 
x ) ) )
4039anim2d 565 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
( z  e.  dom  f  /\  ( ( f `
 z )  e.  ( X  i^i  Y
)  /\  ( (
f `  z )
( D  |`  ( Y  X.  Y ) ) ( f `  y
) )  <  x
) )  ->  (
z  e.  dom  f  /\  ( ( f `  z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) ) )
41 3anass 969 . . . . . . . . . . 11  |-  ( ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  <->  ( z  e.  dom  f  /\  (
( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) ) )
42 3anass 969 . . . . . . . . . . 11  |-  ( ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x )  <-> 
( z  e.  dom  f  /\  ( ( f `
 z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  < 
x ) ) )
4340, 41, 423imtr4g 270 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  (
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  ( z  e. 
dom  f  /\  (
f `  z )  e.  X  /\  (
( f `  z
) D ( f `
 y ) )  <  x ) ) )
4443ralimdv 2833 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  (
f `  y )  e.  ( X  i^i  Y
) )  ->  ( A. z  e.  ( ZZ>=
`  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  ->  A. z  e.  ( ZZ>=
`  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4544impancom 440 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x ) )  ->  ( (
f `  y )  e.  ( X  i^i  Y
)  ->  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4624, 45mpd 15 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  y  e.  ZZ )  /\  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x ) )  ->  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) )
4746ex 434 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  ZZ )  ->  ( A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  A. z  e.  (
ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4847reximdva 2932 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x )  ->  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
4948ralimdv 2833 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y )
( z  e.  dom  f  /\  ( f `  z )  e.  ( X  i^i  Y )  /\  ( ( f `
 z ) ( D  |`  ( Y  X.  Y ) ) ( f `  y ) )  <  x )  ->  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) )
5016, 49anim12d 563 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( f  e.  ( ( X  i^i  Y
)  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) )  ->  ( f  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) ) )
51 xmetres 20070 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
52 iscau2 20919 . . . 4  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) )  ->  ( f  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  <-> 
( f  e.  ( ( X  i^i  Y
)  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) ) ) )
5351, 52syl 16 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  <->  ( f  e.  ( ( X  i^i  Y )  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  ( X  i^i  Y )  /\  ( ( f `  z ) ( D  |`  ( Y  X.  Y
) ) ( f `
 y ) )  <  x ) ) ) )
54 iscau2 20919 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  D )  <->  ( f  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  A. z  e.  ( ZZ>= `  y ) ( z  e.  dom  f  /\  ( f `  z
)  e.  X  /\  ( ( f `  z ) D ( f `  y ) )  <  x ) ) ) )
5550, 53, 543imtr4d 268 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
f  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  ->  f  e.  ( Cau `  D ) ) )
5655ssrdv 3469 1  |-  ( D  e.  ( *Met `  X )  ->  ( Cau `  ( D  |`  ( Y  X.  Y
) ) )  C_  ( Cau `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1758   A.wral 2798   E.wrex 2799   _Vcvv 3076    i^i cin 3434    C_ wss 3435   class class class wbr 4399    X. cxp 4945   dom cdm 4947    |` cres 4949   Fun wfun 5519   ` cfv 5525  (class class class)co 6199    ^pm cpm 7324   CCcc 9390    < clt 9528   ZZcz 10756   ZZ>=cuz 10971   RR+crp 11101   *Metcxmt 17925   Caucca 20895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-po 4748  df-so 4749  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-er 7210  df-map 7325  df-pm 7326  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-neg 9708  df-z 10757  df-uz 10972  df-rp 11102  df-xadd 11200  df-psmet 17933  df-xmet 17934  df-bl 17936  df-cau 20898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator