MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  causs Structured version   Unicode version

Theorem causs 21863
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
causs  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) )

Proof of Theorem causs
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caufpm 21847 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  e.  ( X  ^pm  CC ) )
2 elfvdm 5898 . . . . . . . . . . 11  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
3 cnex 9590 . . . . . . . . . . 11  |-  CC  e.  _V
4 elpmg 7453 . . . . . . . . . . 11  |-  ( ( X  e.  dom  *Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
52, 3, 4sylancl 662 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65biimpa 484 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
71, 6syldan 470 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) )
87simprd 463 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  C_  ( CC  X.  X ) )
9 rnss 5241 . . . . . . 7  |-  ( F 
C_  ( CC  X.  X )  ->  ran  F 
C_  ran  ( CC  X.  X ) )
108, 9syl 16 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  ran  F  C_  ran  ( CC  X.  X
) )
11 rnxpss 5446 . . . . . 6  |-  ran  ( CC  X.  X )  C_  X
1210, 11syl6ss 3511 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  ran  F  C_  X )
1312adantlr 714 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> Y )  /\  F  e.  ( Cau `  D
) )  ->  ran  F 
C_  X )
14 frn 5743 . . . . 5  |-  ( F : NN --> Y  ->  ran  F  C_  Y )
1514ad2antlr 726 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> Y )  /\  F  e.  ( Cau `  D
) )  ->  ran  F 
C_  Y )
1613, 15ssind 3718 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> Y )  /\  F  e.  ( Cau `  D
) )  ->  ran  F 
C_  ( X  i^i  Y ) )
1716ex 434 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  D )  ->  ran  F 
C_  ( X  i^i  Y ) ) )
18 xmetres 20993 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
19 caufpm 21847 . . . . . . . . 9  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y
) )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  e.  ( ( X  i^i  Y )  ^pm  CC )
)
2018, 19sylan 471 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  F  e.  ( ( X  i^i  Y
)  ^pm  CC )
)
21 inex1g 4599 . . . . . . . . . . 11  |-  ( X  e.  dom  *Met  ->  ( X  i^i  Y
)  e.  _V )
222, 21syl 16 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  e. 
_V )
23 elpmg 7453 . . . . . . . . . 10  |-  ( ( ( X  i^i  Y
)  e.  _V  /\  CC  e.  _V )  -> 
( F  e.  ( ( X  i^i  Y
)  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  ( X  i^i  Y ) ) ) ) )
2422, 3, 23sylancl 662 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( ( X  i^i  Y )  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC 
X.  ( X  i^i  Y ) ) ) ) )
2524biimpa 484 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( ( X  i^i  Y
)  ^pm  CC )
)  ->  ( Fun  F  /\  F  C_  ( CC  X.  ( X  i^i  Y ) ) ) )
2620, 25syldan 470 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  ( Fun  F  /\  F  C_  ( CC 
X.  ( X  i^i  Y ) ) ) )
2726simprd 463 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  F  C_  ( CC  X.  ( X  i^i  Y ) ) )
28 rnss 5241 . . . . . 6  |-  ( F 
C_  ( CC  X.  ( X  i^i  Y ) )  ->  ran  F  C_  ran  ( CC  X.  ( X  i^i  Y ) ) )
2927, 28syl 16 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  ran  F  C_  ran  ( CC  X.  ( X  i^i  Y ) ) )
30 rnxpss 5446 . . . . 5  |-  ran  ( CC  X.  ( X  i^i  Y ) )  C_  ( X  i^i  Y )
3129, 30syl6ss 3511 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  ran  F  C_  ( X  i^i  Y ) )
3231ex 434 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  ->  ran  F  C_  ( X  i^i  Y ) ) )
3332adantr 465 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  ->  ran  F  C_  ( X  i^i  Y ) ) )
34 ffn 5737 . . . 4  |-  ( F : NN --> Y  ->  F  Fn  NN )
35 df-f 5598 . . . . 5  |-  ( F : NN --> ( X  i^i  Y )  <->  ( F  Fn  NN  /\  ran  F  C_  ( X  i^i  Y
) ) )
3635simplbi2 625 . . . 4  |-  ( F  Fn  NN  ->  ( ran  F  C_  ( X  i^i  Y )  ->  F : NN --> ( X  i^i  Y ) ) )
3734, 36syl 16 . . 3  |-  ( F : NN --> Y  -> 
( ran  F  C_  ( X  i^i  Y )  ->  F : NN --> ( X  i^i  Y ) ) )
38 inss2 3715 . . . . . . . . 9  |-  ( X  i^i  Y )  C_  Y
3938a1i 11 . . . . . . . 8  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  C_  Y )
40 fss 5745 . . . . . . . 8  |-  ( ( F : NN --> ( X  i^i  Y )  /\  ( X  i^i  Y ) 
C_  Y )  ->  F : NN --> Y )
4139, 40sylan2 474 . . . . . . 7  |-  ( ( F : NN --> ( X  i^i  Y )  /\  D  e.  ( *Met `  X ) )  ->  F : NN --> Y )
4241ancoms 453 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  F : NN
--> Y )
43 ffvelrn 6030 . . . . . . . . . . . 12  |-  ( ( F : NN --> Y  /\  y  e.  NN )  ->  ( F `  y
)  e.  Y )
4443adantr 465 . . . . . . . . . . 11  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( F `  y )  e.  Y
)
45 eluznn 11177 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ( ZZ>= `  y ) )  -> 
z  e.  NN )
46 ffvelrn 6030 . . . . . . . . . . . . 13  |-  ( ( F : NN --> Y  /\  z  e.  NN )  ->  ( F `  z
)  e.  Y )
4745, 46sylan2 474 . . . . . . . . . . . 12  |-  ( ( F : NN --> Y  /\  ( y  e.  NN  /\  z  e.  ( ZZ>= `  y ) ) )  ->  ( F `  z )  e.  Y
)
4847anassrs 648 . . . . . . . . . . 11  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( F `  z )  e.  Y
)
4944, 48ovresd 6442 . . . . . . . . . 10  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( ( F `
 y ) ( D  |`  ( Y  X.  Y ) ) ( F `  z ) )  =  ( ( F `  y ) D ( F `  z ) ) )
5049breq1d 4466 . . . . . . . . 9  |-  ( ( ( F : NN --> Y  /\  y  e.  NN )  /\  z  e.  (
ZZ>= `  y ) )  ->  ( ( ( F `  y ) ( D  |`  ( Y  X.  Y ) ) ( F `  z
) )  <  x  <->  ( ( F `  y
) D ( F `
 z ) )  <  x ) )
5150ralbidva 2893 . . . . . . . 8  |-  ( ( F : NN --> Y  /\  y  e.  NN )  ->  ( A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x  <->  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
5251rexbidva 2965 . . . . . . 7  |-  ( F : NN --> Y  -> 
( E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
5352ralbidv 2896 . . . . . 6  |-  ( F : NN --> Y  -> 
( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( ( F `  y ) ( D  |`  ( Y  X.  Y ) ) ( F `  z
) )  <  x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
5442, 53syl 16 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) D ( F `  z ) )  <  x ) )
55 nnuz 11141 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
5618adantr 465 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( *Met `  ( X  i^i  Y ) ) )
57 1zzd 10916 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  1  e.  ZZ )
58 eqidd 2458 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> ( X  i^i  Y
) )  /\  z  e.  NN )  ->  ( F `  z )  =  ( F `  z ) )
59 eqidd 2458 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  F : NN
--> ( X  i^i  Y
) )  /\  y  e.  NN )  ->  ( F `  y )  =  ( F `  y ) )
60 simpr 461 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  F : NN
--> ( X  i^i  Y
) )
6155, 56, 57, 58, 59, 60iscauf 21845 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) )  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( ( F `  y ) ( D  |`  ( Y  X.  Y
) ) ( F `
 z ) )  <  x ) )
62 simpl 457 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  D  e.  ( *Met `  X
) )
63 id 22 . . . . . . 7  |-  ( F : NN --> ( X  i^i  Y )  ->  F : NN --> ( X  i^i  Y ) )
64 inss1 3714 . . . . . . . 8  |-  ( X  i^i  Y )  C_  X
6564a1i 11 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  ( X  i^i  Y )  C_  X )
66 fss 5745 . . . . . . 7  |-  ( ( F : NN --> ( X  i^i  Y )  /\  ( X  i^i  Y ) 
C_  X )  ->  F : NN --> X )
6763, 65, 66syl2anr 478 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  F : NN
--> X )
6855, 62, 57, 58, 59, 67iscauf 21845 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( F  e.  ( Cau `  D
)  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( ( F `  y ) D ( F `  z ) )  < 
x ) )
6954, 61, 683bitr4rd 286 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> ( X  i^i  Y ) )  ->  ( F  e.  ( Cau `  D
)  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) )
7069ex 434 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( F : NN --> ( X  i^i  Y )  -> 
( F  e.  ( Cau `  D )  <-> 
F  e.  ( Cau `  ( D  |`  ( Y  X.  Y ) ) ) ) ) )
7137, 70sylan9r 658 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( ran  F  C_  ( X  i^i  Y )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) ) )
7217, 33, 71pm5.21ndd 354 1  |-  ( ( D  e.  ( *Met `  X )  /\  F : NN --> Y )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  ( Cau `  ( D  |`  ( Y  X.  Y
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   class class class wbr 4456    X. cxp 5006   dom cdm 5008   ran crn 5009    |` cres 5010   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^pm cpm 7439   CCcc 9507   1c1 9510    < clt 9645   NNcn 10556   ZZ>=cuz 11106   RR+crp 11245   *Metcxmt 18530   Caucca 21818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-z 10886  df-uz 11107  df-rp 11246  df-xneg 11343  df-xadd 11344  df-psmet 18538  df-xmet 18539  df-bl 18541  df-cau 21821
This theorem is referenced by:  minvecolem4a  25920  hhsscms  26322
  Copyright terms: Public domain W3C validator