Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Structured version   Visualization version   Unicode version

Theorem caures 32089
Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1  |-  Z  =  ( ZZ>= `  M )
caures.3  |-  ( ph  ->  M  e.  ZZ )
caures.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
caures.5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
Assertion
Ref Expression
caures  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  |`  Z )  e.  ( Cau `  D
) ) )

Proof of Theorem caures
Dummy variables  j 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
21uztrn2 11176 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
32adantll 720 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
43biantrurd 511 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  e.  dom  F  <->  ( k  e.  Z  /\  k  e.  dom  F ) ) )
5 dmres 5125 . . . . . . . . 9  |-  dom  ( F  |`  Z )  =  ( Z  i^i  dom  F )
65elin2 3621 . . . . . . . 8  |-  ( k  e.  dom  ( F  |`  Z )  <->  ( k  e.  Z  /\  k  e.  dom  F ) )
74, 6syl6bbr 267 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  e.  dom  F  <->  k  e.  dom  ( F  |`  Z ) ) )
873anbi1d 1343 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
98ralbidva 2824 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
109rexbidva 2898 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
1110ralbidv 2827 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
12 caures.5 . . . 4  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
1312biantrurd 511 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
14 caures.4 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
15 elfvdm 5891 . . . . . . 7  |-  ( D  e.  ( Met `  X
)  ->  X  e.  dom  Met )
1614, 15syl 17 . . . . . 6  |-  ( ph  ->  X  e.  dom  Met )
17 cnex 9620 . . . . . 6  |-  CC  e.  _V
18 ssid 3451 . . . . . . 7  |-  X  C_  X
19 uzssz 11178 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
20 zsscn 10945 . . . . . . . . 9  |-  ZZ  C_  CC
2119, 20sstri 3441 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
221, 21eqsstri 3462 . . . . . . 7  |-  Z  C_  CC
23 pmss12g 7498 . . . . . . 7  |-  ( ( ( X  C_  X  /\  Z  C_  CC )  /\  ( X  e. 
dom  Met  /\  CC  e.  _V ) )  ->  ( X  ^pm  Z )  C_  ( X  ^pm  CC ) )
2418, 22, 23mpanl12 688 . . . . . 6  |-  ( ( X  e.  dom  Met  /\  CC  e.  _V )  ->  ( X  ^pm  Z
)  C_  ( X  ^pm  CC ) )
2516, 17, 24sylancl 668 . . . . 5  |-  ( ph  ->  ( X  ^pm  Z
)  C_  ( X  ^pm  CC ) )
26 fvex 5875 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
271, 26eqeltri 2525 . . . . . 6  |-  Z  e. 
_V
28 pmresg 7499 . . . . . 6  |-  ( ( Z  e.  _V  /\  F  e.  ( X  ^pm  CC ) )  -> 
( F  |`  Z )  e.  ( X  ^pm  Z ) )
2927, 12, 28sylancr 669 . . . . 5  |-  ( ph  ->  ( F  |`  Z )  e.  ( X  ^pm  Z ) )
3025, 29sseldd 3433 . . . 4  |-  ( ph  ->  ( F  |`  Z )  e.  ( X  ^pm  CC ) )
3130biantrurd 511 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  <->  ( ( F  |`  Z )  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
3211, 13, 313bitr3d 287 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )  <->  ( ( F  |`  Z )  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
33 metxmet 21349 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
3414, 33syl 17 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
35 caures.3 . . 3  |-  ( ph  ->  M  e.  ZZ )
36 eqidd 2452 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
37 eqidd 2452 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  ( F `  j ) )
381, 34, 35, 36, 37iscau4 22249 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
39 fvres 5879 . . . 4  |-  ( k  e.  Z  ->  (
( F  |`  Z ) `
 k )  =  ( F `  k
) )
4039adantl 468 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F  |`  Z ) `
 k )  =  ( F `  k
) )
41 fvres 5879 . . . 4  |-  ( j  e.  Z  ->  (
( F  |`  Z ) `
 j )  =  ( F `  j
) )
4241adantl 468 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (
( F  |`  Z ) `
 j )  =  ( F `  j
) )
431, 34, 35, 40, 42iscau4 22249 . 2  |-  ( ph  ->  ( ( F  |`  Z )  e.  ( Cau `  D )  <-> 
( ( F  |`  Z )  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
4432, 38, 433bitr4d 289 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  |`  Z )  e.  ( Cau `  D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    C_ wss 3404   class class class wbr 4402   dom cdm 4834    |` cres 4836   ` cfv 5582  (class class class)co 6290    ^pm cpm 7473   CCcc 9537    < clt 9675   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   *Metcxmt 18955   Metcme 18956   Caucca 22223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-2 10668  df-z 10938  df-uz 11160  df-rp 11303  df-xneg 11409  df-xadd 11410  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-cau 22226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator