MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Structured version   Unicode version

Theorem caucvgrlem2 13508
Description: Lemma for caucvgr 13509. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
caucvgrlem2.5  |-  H : CC
--> RR
caucvgrlem2.6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
Assertion
Ref Expression
caucvgrlem2  |-  ( ph  ->  ( n  e.  A  |->  ( H `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( H  o.  F ) ) )
Distinct variable groups:    j, k, n, x, A    j, F, k, n, x    j, H, k, n, x    ph, j,
k, n, x

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3  |-  H : CC
--> RR
2 caucvgr.2 . . 3  |-  ( ph  ->  F : A --> CC )
3 fcompt 6068 . . 3  |-  ( ( H : CC --> RR  /\  F : A --> CC )  ->  ( H  o.  F )  =  ( n  e.  A  |->  ( H `  ( F `
 n ) ) ) )
41, 2, 3sylancr 663 . 2  |-  ( ph  ->  ( H  o.  F
)  =  ( n  e.  A  |->  ( H `
 ( F `  n ) ) ) )
5 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
6 fco 5747 . . . . . 6  |-  ( ( H : CC --> RR  /\  F : A --> CC )  ->  ( H  o.  F ) : A --> RR )
71, 2, 6sylancr 663 . . . . 5  |-  ( ph  ->  ( H  o.  F
) : A --> RR )
8 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
9 caucvgr.4 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
102ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  F : A
--> CC )
11 simprr 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  k  e.  A )
1210, 11ffvelrnd 6033 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( F `  k )  e.  CC )
13 simprl 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  j  e.  A )
1410, 13ffvelrnd 6033 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( F `  j )  e.  CC )
15 caucvgrlem2.6 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
1612, 14, 15syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
171ffvelrni 6031 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  k )  e.  CC  ->  ( H `  ( F `  k ) )  e.  RR )
1812, 17syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( H `  ( F `  k
) )  e.  RR )
191ffvelrni 6031 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  j )  e.  CC  ->  ( H `  ( F `  j ) )  e.  RR )
2014, 19syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( H `  ( F `  j
) )  e.  RR )
2118, 20resubcld 10008 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H `  ( F `  k ) )  -  ( H `  ( F `
 j ) ) )  e.  RR )
2221recnd 9639 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H `  ( F `  k ) )  -  ( H `  ( F `
 j ) ) )  e.  CC )
2322abscld 13278 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  e.  RR )
2412, 14subcld 9950 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( F `  k )  -  ( F `  j ) )  e.  CC )
2524abscld 13278 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )
26 rpre 11251 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
2726ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  x  e.  RR )
28 lelttr 9692 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
2923, 25, 27, 28syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
3016, 29mpand 675 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x  ->  ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
31 fvco3 5950 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( ( H  o.  F ) `  k
)  =  ( H `
 ( F `  k ) ) )
3210, 11, 31syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H  o.  F ) `  k )  =  ( H `  ( F `
 k ) ) )
33 fvco3 5950 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  j  e.  A )  ->  ( ( H  o.  F ) `  j
)  =  ( H `
 ( F `  j ) ) )
3410, 13, 33syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H  o.  F ) `  j )  =  ( H `  ( F `
 j ) ) )
3532, 34oveq12d 6314 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) )  =  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )
3635fveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( ( H  o.  F ) `  k )  -  (
( H  o.  F
) `  j )
) )  =  ( abs `  ( ( H `  ( F `
 k ) )  -  ( H `  ( F `  j ) ) ) ) )
3736breq1d 4466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( ( H  o.  F ) `
 k )  -  ( ( H  o.  F ) `  j
) ) )  < 
x  <->  ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
3830, 37sylibrd 234 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) )
3938imim2d 52 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4039anassrs 648 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  A )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4140ralimdva 2865 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  A )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4241reximdva 2932 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4342ralimdva 2865 . . . . . 6  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( ( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) ) )  <  x ) ) )
449, 43mpd 15 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( ( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) ) )  <  x ) )
455, 7, 8, 44caurcvgr 13507 . . . 4  |-  ( ph  ->  ( H  o.  F
)  ~~> r  ( limsup `  ( H  o.  F
) ) )
46 rlimrel 13327 . . . . 5  |-  Rel  ~~> r
4746releldmi 5249 . . . 4  |-  ( ( H  o.  F )  ~~> r  ( limsup `  ( H  o.  F )
)  ->  ( H  o.  F )  e.  dom  ~~> r  )
4845, 47syl 16 . . 3  |-  ( ph  ->  ( H  o.  F
)  e.  dom  ~~> r  )
49 ax-resscn 9566 . . . . 5  |-  RR  C_  CC
50 fss 5745 . . . . 5  |-  ( ( ( H  o.  F
) : A --> RR  /\  RR  C_  CC )  -> 
( H  o.  F
) : A --> CC )
517, 49, 50sylancl 662 . . . 4  |-  ( ph  ->  ( H  o.  F
) : A --> CC )
5251, 8rlimdm 13385 . . 3  |-  ( ph  ->  ( ( H  o.  F )  e.  dom  ~~> r  <-> 
( H  o.  F
)  ~~> r  (  ~~> r  `  ( H  o.  F
) ) ) )
5348, 52mpbid 210 . 2  |-  ( ph  ->  ( H  o.  F
)  ~~> r  (  ~~> r  `  ( H  o.  F
) ) )
544, 53eqbrtrrd 4478 1  |-  ( ph  ->  ( n  e.  A  |->  ( H `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( H  o.  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296   supcsup 7918   CCcc 9507   RRcr 9508   +oocpnf 9642   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824   RR+crp 11245   abscabs 13078   limsupclsp 13304    ~~> r crli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-limsup 13305  df-rlim 13323
This theorem is referenced by:  caucvgr  13509
  Copyright terms: Public domain W3C validator