MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Structured version   Unicode version

Theorem caucvgrlem 13155
Description: Lemma for caurcvgr 13156. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caurcvgr.1  |-  ( ph  ->  A  C_  RR )
caurcvgr.2  |-  ( ph  ->  F : A --> RR )
caurcvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
caurcvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
caucvgrlem.4  |-  ( ph  ->  R  e.  RR+ )
Assertion
Ref Expression
caucvgrlem  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x    R, j, k, x

Proof of Theorem caucvgrlem
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgrlem.4 . . 3  |-  ( ph  ->  R  e.  RR+ )
2 caurcvgr.4 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
3 breq2 4301 . . . . . 6  |-  ( x  =  R  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) )
43imbi2d 316 . . . . 5  |-  ( x  =  R  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) ) )
54rexralbidv 2764 . . . 4  |-  ( x  =  R  ->  ( E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) ) )
65rspcv 3074 . . 3  |-  ( R  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )
71, 2, 6sylc 60 . 2  |-  ( ph  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
8 caurcvgr.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> RR )
9 caurcvgr.1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
10 reex 9378 . . . . . . . . . . 11  |-  RR  e.  _V
1110ssex 4441 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  A  e. 
_V )
129, 11syl 16 . . . . . . . . 9  |-  ( ph  ->  A  e.  _V )
1310a1i 11 . . . . . . . . 9  |-  ( ph  ->  RR  e.  _V )
14 fex2 6537 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
158, 12, 13, 14syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  F  e.  _V )
16 limsupcl 12956 . . . . . . . 8  |-  ( F  e.  _V  ->  ( limsup `
 F )  e. 
RR* )
1715, 16syl 16 . . . . . . 7  |-  ( ph  ->  ( limsup `  F )  e.  RR* )
1817adantr 465 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  e.  RR* )
198adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  F : A --> RR )
20 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
j  e.  A )
2119, 20ffvelrnd 5849 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( F `  j
)  e.  RR )
221rpred 11032 . . . . . . . 8  |-  ( ph  ->  R  e.  RR )
2322adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  R  e.  RR )
2421, 23readdcld 9418 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  +  R
)  e.  RR )
25 mnfxr 11099 . . . . . . . 8  |- -oo  e.  RR*
2625a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> -oo  e.  RR* )
2721, 23resubcld 9781 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  e.  RR )
2827rexrd 9438 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  e.  RR* )
29 mnflt 11109 . . . . . . . 8  |-  ( ( ( F `  j
)  -  R )  e.  RR  -> -oo  <  ( ( F `  j
)  -  R ) )
3027, 29syl 16 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> -oo  <  ( ( F `
 j )  -  R ) )
319adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A  C_  RR )
32 ressxr 9432 . . . . . . . . . 10  |-  RR  C_  RR*
33 fss 5572 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  RR  C_  RR* )  ->  F : A --> RR* )
348, 32, 33sylancl 662 . . . . . . . . 9  |-  ( ph  ->  F : A --> RR* )
3534adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  F : A --> RR* )
36 caurcvgr.3 . . . . . . . . 9  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
3736adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  sup ( A ,  RR* ,  <  )  = +oo )
3831, 20sseldd 3362 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
j  e.  RR )
39 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
40 breq2 4301 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
j  <_  k  <->  j  <_  m ) )
41 fveq2 5696 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
4241oveq1d 6111 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  j ) ) )
4342fveq2d 5700 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  j ) ) ) )
4443breq1d 4307 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R  <->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  R
) )
4540, 44imbi12d 320 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  <-> 
( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) ) )
4645cbvralv 2952 . . . . . . . . . . 11  |-  ( A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R )  <->  A. m  e.  A  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  R
) )
4739, 46sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) )
4819ffvelrnda 5848 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( F `  m )  e.  RR )
4921adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( F `  j )  e.  RR )
5048, 49resubcld 9781 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( F `  m
)  -  ( F `
 j ) )  e.  RR )
5150recnd 9417 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( F `  m
)  -  ( F `
 j ) )  e.  CC )
5251abscld 12927 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  e.  RR )
5323adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  R  e.  RR )
54 ltle 9468 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
)
5552, 53, 54syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
)
5648, 49, 53absdifled 12926 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R  <->  ( (
( F `  j
)  -  R )  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) ) ) )
5755, 56sylibd 214 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  /\  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) ) )
58 simpl 457 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  j )  -  R
)  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) )  ->  (
( F `  j
)  -  R )  <_  ( F `  m ) )
5957, 58syl6 33 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) ) )
6059imim2d 52 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )  ->  ( j  <_  m  ->  ( ( F `
 j )  -  R )  <_  ( F `  m )
) ) )
6160ralimdva 2799 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )  ->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) ) ) )
6247, 61mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) ) )
63 breq1 4300 . . . . . . . . . . . 12  |-  ( n  =  j  ->  (
n  <_  m  <->  j  <_  m ) )
6463imbi1d 317 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( n  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) )  <->  ( j  <_  m  ->  ( ( F `  j )  -  R )  <_  ( F `  m )
) ) )
6564ralbidv 2740 . . . . . . . . . 10  |-  ( n  =  j  ->  ( A. m  e.  A  ( n  <_  m  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) )  <->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R )  <_  ( F `  m )
) ) )
6665rspcev 3078 . . . . . . . . 9  |-  ( ( j  e.  RR  /\  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )
6738, 62, 66syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )
6831, 35, 28, 37, 67limsupbnd2 12966 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  <_  ( limsup `  F ) )
6926, 28, 18, 30, 68xrltletrd 11140 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> -oo  <  ( limsup `  F
) )
7024rexrd 9438 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  +  R
)  e.  RR* )
7152adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  e.  RR )
7223adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  RR )
73 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  m  e.  A )
74 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
75 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
j  <_  m )
7645rspcv 3074 . . . . . . . . . . . . . 14  |-  ( m  e.  A  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  ->  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) ) )
7773, 74, 75, 76syl3c 61 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )
7871, 72, 77ltled 9527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
7948adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  e.  RR )
8021adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  j
)  e.  RR )
8179, 80, 72absdifled 12926 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R  <->  ( (
( F `  j
)  -  R )  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) ) ) )
8278, 81mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  /\  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) )
8382simprd 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  <_  ( ( F `  j )  +  R ) )
8483expr 615 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
j  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
8584ralrimiva 2804 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) )
8663imbi1d 317 . . . . . . . . . 10  |-  ( n  =  j  ->  (
( n  <_  m  ->  ( F `  m
)  <_  ( ( F `  j )  +  R ) )  <->  ( j  <_  m  ->  ( F `  m )  <_  (
( F `  j
)  +  R ) ) ) )
8786ralbidv 2740 . . . . . . . . 9  |-  ( n  =  j  ->  ( A. m  e.  A  ( n  <_  m  -> 
( F `  m
)  <_  ( ( F `  j )  +  R ) )  <->  A. m  e.  A  ( j  <_  m  ->  ( F `  m )  <_  (
( F `  j
)  +  R ) ) ) )
8887rspcev 3078 . . . . . . . 8  |-  ( ( j  e.  RR  /\  A. m  e.  A  ( j  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
8938, 85, 88syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
9031, 35, 70, 89limsupbnd1 12965 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  <_  ( ( F `  j )  +  R
) )
91 xrre 11146 . . . . . 6  |-  ( ( ( ( limsup `  F
)  e.  RR*  /\  (
( F `  j
)  +  R )  e.  RR )  /\  ( -oo  <  ( limsup `  F )  /\  ( limsup `
 F )  <_ 
( ( F `  j )  +  R
) ) )  -> 
( limsup `  F )  e.  RR )
9218, 24, 69, 90, 91syl22anc 1219 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  e.  RR )
9392adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  e.  RR )
9479, 93resubcld 9781 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  ( limsup `
 F ) )  e.  RR )
9594recnd 9417 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  ( limsup `
 F ) )  e.  CC )
9695abscld 12927 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  e.  RR )
97 2re 10396 . . . . . . . . . 10  |-  2  e.  RR
98 remulcl 9372 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  R  e.  RR )  ->  ( 2  x.  R
)  e.  RR )
9997, 72, 98sylancr 663 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  e.  RR )
100 3re 10400 . . . . . . . . . 10  |-  3  e.  RR
101 remulcl 9372 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  R  e.  RR )  ->  ( 3  x.  R
)  e.  RR )
102100, 72, 101sylancr 663 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 3  x.  R
)  e.  RR )
10379recnd 9417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  e.  CC )
10493recnd 9417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  e.  CC )
105103, 104abssubd 12944 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  =  ( abs `  (
( limsup `  F )  -  ( F `  m ) ) ) )
10679, 99resubcld 9781 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  e.  RR )
10727adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  e.  RR )
10872recnd 9417 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  CC )
1091082timesd 10572 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
110109oveq2d 6112 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  =  ( ( F `  m )  -  ( R  +  R ) ) )
111103, 108, 108subsub4d 9755 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  -  R
)  =  ( ( F `  m )  -  ( R  +  R ) ) )
112110, 111eqtr4d 2478 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  =  ( ( ( F `  m
)  -  R )  -  R ) )
11379, 72resubcld 9781 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  R
)  e.  RR )
11479, 72, 80lesubaddd 9941 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  <_  ( F `  j )  <->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
11583, 114mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  R
)  <_  ( F `  j ) )
116113, 80, 72, 115lesub1dd 9960 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  -  R
)  <_  ( ( F `  j )  -  R ) )
117112, 116eqbrtrd 4317 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  <_  ( ( F `  j )  -  R ) )
11868adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  <_  ( limsup `  F ) )
119106, 107, 93, 117, 118letrd 9533 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  <_  ( limsup `  F ) )
12024adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  e.  RR )
12179, 99readdcld 9418 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  ( 2  x.  R ) )  e.  RR )
12290adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  <_  ( ( F `  j )  +  R
) )
12379, 72readdcld 9418 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  R
)  e.  RR )
12482, 58syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) )
12580, 72, 79lesubaddd 9941 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  <->  ( F `  j )  <_  ( ( F `
 m )  +  R ) ) )
126124, 125mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  j
)  <_  ( ( F `  m )  +  R ) )
12780, 123, 72, 126leadd1dd 9958 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  <_  ( (
( F `  m
)  +  R )  +  R ) )
128103, 108, 108addassd 9413 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  +  R )  +  R
)  =  ( ( F `  m )  +  ( R  +  R ) ) )
129109oveq2d 6112 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  ( 2  x.  R ) )  =  ( ( F `  m )  +  ( R  +  R ) ) )
130128, 129eqtr4d 2478 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  +  R )  +  R
)  =  ( ( F `  m )  +  ( 2  x.  R ) ) )
131127, 130breqtrd 4321 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  <_  ( ( F `  m )  +  ( 2  x.  R ) ) )
13293, 120, 121, 122, 131letrd 9533 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  <_  ( ( F `  m )  +  ( 2  x.  R ) ) )
13393, 79, 99absdifled 12926 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( abs `  (
( limsup `  F )  -  ( F `  m ) ) )  <_  ( 2  x.  R )  <->  ( (
( F `  m
)  -  ( 2  x.  R ) )  <_  ( limsup `  F
)  /\  ( limsup `  F )  <_  (
( F `  m
)  +  ( 2  x.  R ) ) ) ) )
134119, 132, 133mpbir2and 913 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( limsup `  F )  -  ( F `  m ) ) )  <_  ( 2  x.  R ) )
135105, 134eqbrtrd 4317 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <_  ( 2  x.  R ) )
136 2lt3 10494 . . . . . . . . . 10  |-  2  <  3
13797a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
2  e.  RR )
138100a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
3  e.  RR )
1391adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  R  e.  RR+ )
140139adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  RR+ )
141137, 138, 140ltmul1d 11069 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  <  3  <->  ( 2  x.  R )  <  ( 3  x.  R ) ) )
142136, 141mpbii 211 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  <  ( 3  x.  R ) )
14396, 99, 102, 135, 142lelttrd 9534 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) )
144143expr 615 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) )
145144ralrimiva 2804 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) )
14641oveq1d 6111 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( F `  k
)  -  ( limsup `  F ) )  =  ( ( F `  m )  -  ( limsup `
 F ) ) )
147146fveq2d 5700 . . . . . . . . 9  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( limsup `  F )
) )  =  ( abs `  ( ( F `  m )  -  ( limsup `  F
) ) ) )
148147breq1d 4307 . . . . . . . 8  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R )  <->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) )
14940, 148imbi12d 320 . . . . . . 7  |-  ( k  =  m  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) )  <->  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) ) )
150149cbvralv 2952 . . . . . 6  |-  ( A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) )  <->  A. m  e.  A  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) )
151145, 150sylibr 212 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) )
15292, 151jca 532 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
153152expr 615 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  ->  ( ( limsup `  F )  e.  RR  /\ 
A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) ) ) )
154153reximdva 2833 . 2  |-  ( ph  ->  ( E. j  e.  A  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
)  ->  E. j  e.  A  ( ( limsup `
 F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) ) ) )
1557, 154mpd 15 1  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    C_ wss 3333   class class class wbr 4297   -->wf 5419   ` cfv 5423  (class class class)co 6096   supcsup 7695   RRcr 9286    + caddc 9290    x. cmul 9292   +oocpnf 9420   -oocmnf 9421   RR*cxr 9422    < clt 9423    <_ cle 9424    - cmin 9600   2c2 10376   3c3 10377   RR+crp 10996   abscabs 12728   limsupclsp 12953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-rp 10997  df-ico 11311  df-seq 11812  df-exp 11871  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-limsup 12954
This theorem is referenced by:  caurcvgr  13156
  Copyright terms: Public domain W3C validator