MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Unicode version

Theorem caucvgr 12424
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
Assertion
Ref Expression
caucvgr  |-  ( ph  ->  F  e.  dom  ~~> r  )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x

Proof of Theorem caucvgr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5  |-  ( ph  ->  F : A --> CC )
21feqmptd 5738 . . . 4  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( F `
 n ) ) )
31ffvelrnda 5829 . . . . . 6  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  e.  CC )
43replimd 11957 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  =  ( ( Re
`  ( F `  n ) )  +  ( _i  x.  (
Im `  ( F `  n ) ) ) ) )
54mpteq2dva 4255 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( F `  n
) )  =  ( n  e.  A  |->  ( ( Re `  ( F `  n )
)  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) ) )
62, 5eqtrd 2436 . . 3  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( ( Re `  ( F `
 n ) )  +  ( _i  x.  ( Im `  ( F `
 n ) ) ) ) ) )
7 fvex 5701 . . . . 5  |-  ( Re
`  ( F `  n ) )  e. 
_V
87a1i 11 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
Re `  ( F `  n ) )  e. 
_V )
9 ovex 6065 . . . . 5  |-  ( _i  x.  ( Im `  ( F `  n ) ) )  e.  _V
109a1i 11 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
_i  x.  ( Im `  ( F `  n
) ) )  e. 
_V )
11 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
12 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
13 caucvgr.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
14 ref 11872 . . . . 5  |-  Re : CC
--> RR
15 resub 11887 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Re `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Re `  ( F `
 k ) )  -  ( Re `  ( F `  j ) ) ) )
1615fveq2d 5691 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  j ) ) ) ) )
17 subcl 9261 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( F `  k )  -  ( F `  j )
)  e.  CC )
18 absrele 12068 . . . . . . 7  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
1917, 18syl 16 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2016, 19eqbrtrrd 4194 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Re `  ( F `  k )
)  -  ( Re
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2111, 1, 12, 13, 14, 20caucvgrlem2 12423 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( Re `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Re  o.  F ) ) )
22 ax-icn 9005 . . . . . . 7  |-  _i  e.  CC
2322elexi 2925 . . . . . 6  |-  _i  e.  _V
2423a1i 11 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  _i  e.  _V )
25 fvex 5701 . . . . . 6  |-  ( Im
`  ( F `  n ) )  e. 
_V
2625a1i 11 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  (
Im `  ( F `  n ) )  e. 
_V )
27 rlimconst 12293 . . . . . 6  |-  ( ( A  C_  RR  /\  _i  e.  CC )  ->  (
n  e.  A  |->  _i )  ~~> r  _i )
2811, 22, 27sylancl 644 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  _i )  ~~> r  _i )
29 imf 11873 . . . . . 6  |-  Im : CC
--> RR
30 imsub 11895 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Im `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Im `  ( F `
 k ) )  -  ( Im `  ( F `  j ) ) ) )
3130fveq2d 5691 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  j ) ) ) ) )
32 absimle 12069 . . . . . . . 8  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3317, 32syl 16 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3431, 33eqbrtrrd 4194 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Im `  ( F `  k )
)  -  ( Im
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3511, 1, 12, 13, 29, 34caucvgrlem2 12423 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  ( Im `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Im  o.  F ) ) )
3624, 26, 28, 35rlimmul 12393 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( _i  x.  (
Im `  ( F `  n ) ) ) )  ~~> r  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )
378, 10, 21, 36rlimadd 12391 . . 3  |-  ( ph  ->  ( n  e.  A  |->  ( ( Re `  ( F `  n ) )  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) )  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) ) )
386, 37eqbrtrd 4192 . 2  |-  ( ph  ->  F  ~~> r  ( (  ~~> r  `  ( Re  o.  F ) )  +  ( _i  x.  ( 
~~> r  `  ( Im  o.  F ) ) ) ) )
39 rlimrel 12242 . . 3  |-  Rel  ~~> r
4039releldmi 5065 . 2  |-  ( F  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )  ->  F  e.  dom  ~~> r  )
4138, 40syl 16 1  |-  ( ph  ->  F  e.  dom  ~~> r  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   dom cdm 4837    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040   supcsup 7403   CCcc 8944   RRcr 8945   _ici 8948    + caddc 8949    x. cmul 8951    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   RR+crp 10568   Recre 11857   Imcim 11858   abscabs 11994    ~~> r crli 12234
This theorem is referenced by:  caucvg  12427  dvfsumrlim  19868
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-ico 10878  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-rlim 12238
  Copyright terms: Public domain W3C validator