MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Unicode version

Theorem caucvgb 13162
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caucvgb  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x    k, V
Allowed substitution hints:    V( x, j)

Proof of Theorem caucvgb
Dummy variables  i  m  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5041 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. m <. F ,  m >.  e.  ~~>  ) )
21ibi 241 . . 3  |-  ( F  e.  dom  ~~>  ->  E. m <. F ,  m >.  e.  ~~>  )
3 df-br 4298 . . . . 5  |-  ( F  ~~>  m  <->  <. F ,  m >.  e.  ~~>  )
4 caucvgb.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
5 simpll 753 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  M  e.  ZZ )
6 1rp 11000 . . . . . . . . 9  |-  1  e.  RR+
76a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  1  e.  RR+ )
8 eqidd 2444 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
9 simpr 461 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  F  ~~>  m )
104, 5, 7, 8, 9climi 12993 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  m ) )  <  1 ) )
11 simpl 457 . . . . . . . . 9  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  m ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1211ralimi 2796 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  m ) )  <  1 )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
1312reximi 2828 . . . . . . 7  |-  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  m ) )  <  1 )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
1410, 13syl 16 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
1514ex 434 . . . . 5  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  m  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
163, 15syl5bir 218 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( <. F ,  m >.  e.  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
1716exlimdv 1690 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. m <. F ,  m >.  e.  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
182, 17syl5 32 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
19 simpl 457 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( F `  k
)  e.  CC )
2019ralimi 2796 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
2120reximi 2828 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
2221ralimi 2796 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )
23 fveq2 5696 . . . . . . . 8  |-  ( j  =  n  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  n )
)
2423raleqdv 2928 . . . . . . 7  |-  ( j  =  n  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  CC  <->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
2524cbvrexv 2953 . . . . . 6  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC  <->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
2625a1i 11 . . . . 5  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  CC  <->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
2726rspcv 3074 . . . 4  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )
286, 22, 27mpsyl 63 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
2928a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
30 eluzelz 10875 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
3130, 4eleq2s 2535 . . . . . . . . 9  |-  ( n  e.  Z  ->  n  e.  ZZ )
32 eqid 2443 . . . . . . . . . 10  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
3332climcau 13153 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
3431, 33sylan 471 . . . . . . . 8  |-  ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
3532r19.29uz 12843 . . . . . . . . . 10  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
3635ex 434 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
3736ralimdv 2800 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
3834, 37mpan9 469 . . . . . . 7  |-  ( ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938an32s 802 . . . . . 6  |-  ( ( ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039adantll 713 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  (
n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
41 simplrr 760 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
42 fveq2 5696 . . . . . . . . . 10  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
4342eleq1d 2509 . . . . . . . . 9  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
4443rspccva 3077 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  m  e.  ( ZZ>= `  n )
)  ->  ( F `  m )  e.  CC )
4541, 44sylan 471 . . . . . . 7  |-  ( ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )  /\  m  e.  (
ZZ>= `  n ) )  ->  ( F `  m )  e.  CC )
46 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ralimi 2796 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4842oveq1d 6111 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  j ) ) )
4948fveq2d 5700 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  j ) ) ) )
5049breq1d 4307 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
) )
5150cbvralv 2952 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  <->  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
)
5247, 51sylib 196 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x )
5352reximi 2828 . . . . . . . . . 10  |-  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
)
5453ralimi 2796 . . . . . . . . 9  |-  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x )
5554adantl 466 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x )
56 fveq2 5696 . . . . . . . . . . . 12  |-  ( j  =  i  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  i )
)
57 fveq2 5696 . . . . . . . . . . . . . . 15  |-  ( j  =  i  ->  ( F `  j )  =  ( F `  i ) )
5857oveq2d 6112 . . . . . . . . . . . . . 14  |-  ( j  =  i  ->  (
( F `  m
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  i ) ) )
5958fveq2d 5700 . . . . . . . . . . . . 13  |-  ( j  =  i  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  i ) ) ) )
6059breq1d 4307 . . . . . . . . . . . 12  |-  ( j  =  i  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  x
) )
6156, 60raleqbidv 2936 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x  <->  A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  x ) )
6261cbvrexv 2953 . . . . . . . . . 10  |-  ( E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  j )
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  x )
63 breq2 4301 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  y
) )
6463rexralbidv 2764 . . . . . . . . . 10  |-  ( x  =  y  ->  ( E. i  e.  ( ZZ>=
`  n ) A. m  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  y ) )
6562, 64syl5bb 257 . . . . . . . . 9  |-  ( x  =  y  ->  ( E. j  e.  ( ZZ>=
`  n ) A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  y ) )
6665cbvralv 2952 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x  <->  A. y  e.  RR+  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  y )
6755, 66sylib 196 . . . . . . 7  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. y  e.  RR+  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  y )
68 simpll 753 . . . . . . 7  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  F  e.  V )
6932, 45, 67, 68caucvg 13161 . . . . . 6  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  F  e.  dom  ~~>  )
7069adantlll 717 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  (
n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )  ->  F  e.  dom  ~~>  )
7140, 70impbida 828 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( F  e.  dom  ~~> 
<-> 
A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
724, 32cau4 12849 . . . . 5  |-  ( n  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
7372ad2antrl 727 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
7471, 73bitr4d 256 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( F  e.  dom  ~~> 
<-> 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
7574rexlimdvaa 2847 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
7618, 29, 75pm5.21ndd 354 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2720   E.wrex 2721   <.cop 3888   class class class wbr 4297   dom cdm 4845   ` cfv 5423  (class class class)co 6096   CCcc 9285   1c1 9288    < clt 9423    - cmin 9600   ZZcz 10651   ZZ>=cuz 10866   RR+crp 10996   abscabs 12728    ~~> cli 12967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-pm 7222  df-en 7316  df-dom 7317  df-sdom 7318  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-rp 10997  df-ico 11311  df-fl 11647  df-seq 11812  df-exp 11871  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-limsup 12954  df-clim 12971  df-rlim 12972
This theorem is referenced by:  serf0  13163
  Copyright terms: Public domain W3C validator