MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Structured version   Unicode version

Theorem caucvg 13481
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1  |-  Z  =  ( ZZ>= `  M )
caucvg.2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
caucvg.3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
caucvg.4  |-  ( ph  ->  F  e.  V )
Assertion
Ref Expression
caucvg  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    j, k, x, F    j, M, k, x    ph, j, k, x   
j, Z, k, x
Allowed substitution hints:    V( x, j, k)

Proof of Theorem caucvg
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
21cbvmptv 4544 . . . . 5  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( n  e.  Z  |->  ( F `  n ) )
3 caucvg.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
4 uzssz 11113 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3539 . . . . . . . . 9  |-  Z  C_  ZZ
6 zssre 10883 . . . . . . . . 9  |-  ZZ  C_  RR
75, 6sstri 3518 . . . . . . . 8  |-  Z  C_  RR
87a1i 11 . . . . . . 7  |-  ( ph  ->  Z  C_  RR )
9 caucvg.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
102eqcomi 2480 . . . . . . . 8  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( k  e.  Z  |->  ( F `  k ) )
119, 10fmptd 6056 . . . . . . 7  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) ) : Z --> CC )
12 1rp 11236 . . . . . . . . . . 11  |-  1  e.  RR+
13 ne0i 3796 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
1412, 13ax-mp 5 . . . . . . . . . 10  |-  RR+  =/=  (/)
15 caucvg.3 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
16 r19.2z 3923 . . . . . . . . . 10  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
1714, 15, 16sylancr 663 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
18 eluzel2 11099 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1918, 3eleq2s 2575 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  M  e.  ZZ )
2019a1d 25 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  M  e.  ZZ ) )
2120rexlimiv 2953 . . . . . . . . . 10  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  M  e.  ZZ )
2221rexlimivw 2956 . . . . . . . . 9  |-  ( E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  M  e.  ZZ )
2317, 22syl 16 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
243uzsup 11970 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  = +oo )
2523, 24syl 16 . . . . . . 7  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = +oo )
265sseli 3505 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  j  e.  ZZ )
275sseli 3505 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  k  e.  ZZ )
28 eluz 11107 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
2926, 27, 28syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
3029biimprd 223 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
31 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
32 eqid 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
33 fvex 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 n )  e. 
_V
3431, 32, 33fvmpt3i 5961 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  k
)  =  ( F `
 k ) )
35 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
3635, 32, 33fvmpt3i 5961 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  j
)  =  ( F `
 j ) )
3734, 36oveqan12rd 6315 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) )  =  ( ( F `  k )  -  ( F `  j )
) )
3837fveq2d 5876 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  =  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3938breq1d 4463 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x  <->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4039biimprd 223 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  -> 
( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4130, 40imim12d 74 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4241ex 434 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4342com23 78 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( k  e.  Z  ->  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4443ralimdv2 2874 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4544reximia 2933 . . . . . . . . 9  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4645ralimi 2860 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) )
4715, 46syl 16 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  (
j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `  n
) ) `  k
)  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x
) )
488, 11, 25, 47caucvgr 13478 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  e.  dom  ~~> r  )
4911, 25rlimdm 13354 . . . . . 6  |-  ( ph  ->  ( ( n  e.  Z  |->  ( F `  n ) )  e. 
dom 
~~> r  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) ) )
5048, 49mpbid 210 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
512, 50syl5eqbr 4486 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
52 eqid 2467 . . . . . 6  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( k  e.  Z  |->  ( F `  k ) )
539, 52fmptd 6056 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) ) : Z --> CC )
543, 23, 53rlimclim 13349 . . . 4  |-  ( ph  ->  ( ( k  e.  Z  |->  ( F `  k ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) )  <->  ( k  e.  Z  |->  ( F `  k ) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) ) )
5551, 54mpbid 210 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
56 caucvg.4 . . . 4  |-  ( ph  ->  F  e.  V )
573, 52climmpt 13374 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5823, 56, 57syl2anc 661 . . 3  |-  ( ph  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5955, 58mpbird 232 . 2  |-  ( ph  ->  F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
60 climrel 13295 . . 3  |-  Rel  ~~>
6160releldmi 5245 . 2  |-  ( F  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) )  ->  F  e.  dom  ~~>  )
6259, 61syl 16 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    C_ wss 3481   (/)c0 3790   class class class wbr 4453    |-> cmpt 4511   dom cdm 5005   ` cfv 5594  (class class class)co 6295   supcsup 7912   CCcc 9502   RRcr 9503   1c1 9505   +oocpnf 9637   RR*cxr 9639    < clt 9640    <_ cle 9641    - cmin 9817   ZZcz 10876   ZZ>=cuz 11094   RR+crp 11232   abscabs 13047    ~~> cli 13287    ~~> r crli 13288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-ico 11547  df-fl 11909  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292
This theorem is referenced by:  caucvgb  13482  cvgcmpce  13612  ulmcau  22657  dchrisumlem3  23542  rrncmslem  30255
  Copyright terms: Public domain W3C validator