MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Unicode version

Theorem caucfil 19189
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1  |-  Z  =  ( ZZ>= `  M )
caucfil.2  |-  L  =  ( ( X  FilMap  F ) `  ( ZZ>= " Z ) )
Assertion
Ref Expression
caucfil  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( F  e.  ( Cau `  D
)  <->  L  e.  (CauFil `  D ) ) )

Proof of Theorem caucfil
Dummy variables  j 
k  m  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 938 . . . . . . . 8  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x ) )
2 caucfil.1 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
32uztrn2 10459 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
43adantll 695 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
5 simpll3 998 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  F : Z
--> X )
6 fdm 5554 . . . . . . . . . . . . 13  |-  ( F : Z --> X  ->  dom  F  =  Z )
75, 6syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  dom  F  =  Z )
84, 7eleqtrrd 2481 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  dom  F )
95, 4ffvelrnd 5830 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  X
)
108, 9jca 519 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )
1110biantrurd 495 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x  <->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) )
12 uzss 10462 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
1312adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
1413sseld 3307 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( m  e.  ( ZZ>= `  k )  ->  m  e.  ( ZZ>= `  j ) ) )
1514pm4.71rd 617 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( m  e.  ( ZZ>= `  k )  <->  ( m  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  k )
) ) )
1615imbi1d 309 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  <->  ( (
m  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  k )
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) ) )
17 impexp 434 . . . . . . . . . . 11  |-  ( ( ( m  e.  (
ZZ>= `  j )  /\  m  e.  ( ZZ>= `  k ) )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( m  e.  (
ZZ>= `  j )  -> 
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
1816, 17syl6bb 253 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  <->  ( m  e.  ( ZZ>= `  j )  ->  ( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) ) )
1918ralbidv2 2688 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x  <->  A. m  e.  (
ZZ>= `  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) )
2011, 19bitr3d 247 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x )  <->  A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) )
211, 20syl5bb 249 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
2221ralbidva 2682 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) )
23 r19.26-2 2799 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) ) )
24 eleq1 2464 . . . . . . . . . . . . 13  |-  ( u  =  k  ->  (
u  e.  ( ZZ>= `  m )  <->  k  e.  ( ZZ>= `  m )
) )
25 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( u  =  k  ->  ( F `  u )  =  ( F `  k ) )
2625oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( u  =  k  ->  (
( F `  m
) D ( F `
 u ) )  =  ( ( F `
 m ) D ( F `  k
) ) )
2726breq1d 4182 . . . . . . . . . . . . 13  |-  ( u  =  k  ->  (
( ( F `  m ) D ( F `  u ) )  <  x  <->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
2824, 27imbi12d 312 . . . . . . . . . . . 12  |-  ( u  =  k  ->  (
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <-> 
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) ) )
2928cbvralv 2892 . . . . . . . . . . 11  |-  ( A. u  e.  ( ZZ>= `  j ) ( u  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  u ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) )
3029ralbii 2690 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  j ) A. u  e.  ( ZZ>= `  j )
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <->  A. m  e.  ( ZZ>=
`  j ) A. k  e.  ( ZZ>= `  j ) ( k  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
31 fveq2 5687 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  k )
)
3231eleq2d 2471 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
u  e.  ( ZZ>= `  m )  <->  u  e.  ( ZZ>= `  k )
) )
33 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
3433oveq1d 6055 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
( F `  m
) D ( F `
 u ) )  =  ( ( F `
 k ) D ( F `  u
) ) )
3534breq1d 4182 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
( ( F `  m ) D ( F `  u ) )  <  x  <->  ( ( F `  k ) D ( F `  u ) )  < 
x ) )
3632, 35imbi12d 312 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <-> 
( u  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  u ) )  <  x ) ) )
37 eleq1 2464 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
u  e.  ( ZZ>= `  k )  <->  m  e.  ( ZZ>= `  k )
) )
38 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( u  =  m  ->  ( F `  u )  =  ( F `  m ) )
3938oveq2d 6056 . . . . . . . . . . . . 13  |-  ( u  =  m  ->  (
( F `  k
) D ( F `
 u ) )  =  ( ( F `
 k ) D ( F `  m
) ) )
4039breq1d 4182 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
( ( F `  k ) D ( F `  u ) )  <  x  <->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
4137, 40imbi12d 312 . . . . . . . . . . 11  |-  ( u  =  m  ->  (
( u  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  u ) )  <  x )  <-> 
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
4236, 41cbvral2v 2900 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  j ) A. u  e.  ( ZZ>= `  j )
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
43 ralcom 2828 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( k  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
4430, 42, 433bitr3i 267 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( k  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
4544anbi2i 676 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )  <->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) ) )
46 anidm 626 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )  <->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
4723, 45, 463bitr2i 265 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
48 simpll1 996 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  D  e.  ( * Met `  X
) )
49 simpll3 998 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  F : Z --> X )
502uztrn2 10459 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  Z )
5150ad2ant2l 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  m  e.  Z )
5249, 51ffvelrnd 5830 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  ( F `  m )  e.  X )
539adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  e.  X )
54 xmetsym 18330 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  m )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 m ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 m ) ) )
5548, 52, 53, 54syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( F `  m
) D ( F `
 k ) )  =  ( ( F `
 k ) D ( F `  m
) ) )
5655breq1d 4182 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( F `  m ) D ( F `  k ) )  <  x  <->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
5756imbi2d 308 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x )  <-> 
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
5857anbi2d 685 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  ( ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  /\  (
k  e.  ( ZZ>= `  m )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) ) )
59 jaob 759 . . . . . . . . . 10  |-  ( ( ( m  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m ) )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  k ) D ( F `  m ) )  <  x ) ) )
60 eluzelz 10452 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
61 eluzelz 10452 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
62 uztric 10463 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( m  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m ) ) )
6360, 61, 62syl2an 464 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>=
`  m ) ) )
6463adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m )
) )
65 pm5.5 327 . . . . . . . . . . 11  |-  ( ( m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m )
)  ->  ( (
( m  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m ) )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( ( F `  k ) D ( F `  m ) )  <  x ) )
6664, 65syl 16 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>=
`  m ) )  ->  ( ( F `
 k ) D ( F `  m
) )  <  x
)  <->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
6759, 66syl5bbr 251 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  k ) D ( F `  m ) )  <  x ) )  <->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
6858, 67bitrd 245 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
69682ralbidva 2706 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  /\  ( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
7047, 69syl5bbr 251 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7122, 70bitrd 245 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7271rexbidva 2683 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
73 uzf 10447 . . . . . 6  |-  ZZ>= : ZZ --> ~P ZZ
74 ffn 5550 . . . . . 6  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7573, 74ax-mp 8 . . . . 5  |-  ZZ>=  Fn  ZZ
76 uzssz 10461 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
772, 76eqsstri 3338 . . . . 5  |-  Z  C_  ZZ
78 raleq 2864 . . . . . . 7  |-  ( u  =  ( ZZ>= `  j
)  ->  ( A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x  <->  A. m  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  m ) )  <  x ) )
7978raleqbi1dv 2872 . . . . . 6  |-  ( u  =  ( ZZ>= `  j
)  ->  ( A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
8079rexima 5936 . . . . 5  |-  ( (
ZZ>=  Fn  ZZ  /\  Z  C_  ZZ )  ->  ( E. u  e.  ( ZZ>=
" Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
8175, 77, 80mp2an 654 . . . 4  |-  ( E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  ( ( F `  k ) D ( F `  m ) )  < 
x  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( ( F `  k ) D ( F `  m ) )  < 
x )
8272, 81syl6bbr 255 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x ) )
8382ralbidv 2686 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x ) )
84 elfvdm 5716 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
8584adantr 452 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  X  e.  dom  * Met )
86 cnex 9027 . . . . . 6  |-  CC  e.  _V
8785, 86jctir 525 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  ( X  e. 
dom  * Met  /\  CC  e.  _V ) )
88 zsscn 10246 . . . . . . 7  |-  ZZ  C_  CC
8977, 88sstri 3317 . . . . . 6  |-  Z  C_  CC
9089jctr 527 . . . . 5  |-  ( F : Z --> X  -> 
( F : Z --> X  /\  Z  C_  CC ) )
91 elpm2r 6993 . . . . 5  |-  ( ( ( X  e.  dom  * Met  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC )
)
9287, 90, 91syl2an 464 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ )  /\  F : Z
--> X )  ->  F  e.  ( X  ^pm  CC ) )
93 simpl 444 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  D  e.  ( * Met `  X
) )
94 simpr 448 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
952, 93, 94iscau3 19184 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  ( F  e.  ( Cau `  D
)  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
9695baibd 876 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ )  /\  F  e.  ( X  ^pm  CC ) )  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
9792, 96syldan 457 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ )  /\  F : Z
--> X )  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
98973impa 1148 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( F  e.  ( Cau `  D
)  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) )
99 caucfil.2 . . . 4  |-  L  =  ( ( X  FilMap  F ) `  ( ZZ>= " Z ) )
10099eleq1i 2467 . . 3  |-  ( L  e.  (CauFil `  D
)  <->  ( ( X 
FilMap  F ) `  ( ZZ>=
" Z ) )  e.  (CauFil `  D
) )
1012uzfbas 17883 . . . 4  |-  ( M  e.  ZZ  ->  ( ZZ>=
" Z )  e.  ( fBas `  Z
) )
102 fmcfil 19178 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  ( ZZ>= " Z
)  e.  ( fBas `  Z )  /\  F : Z --> X )  -> 
( ( ( X 
FilMap  F ) `  ( ZZ>=
" Z ) )  e.  (CauFil `  D
)  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
103101, 102syl3an2 1218 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( ( ( X  FilMap  F ) `  ( ZZ>= " Z ) )  e.  (CauFil `  D
)  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
104100, 103syl5bb 249 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( L  e.  (CauFil `  D )  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x ) )
10583, 98, 1043bitr4d 277 1  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( F  e.  ( Cau `  D
)  <->  L  e.  (CauFil `  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   ~Pcpw 3759   class class class wbr 4172   dom cdm 4837   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^pm cpm 6978   CCcc 8944    < clt 9076   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568   * Metcxmt 16641   fBascfbas 16644    FilMap cfm 17918  CauFilccfil 19158   Caucca 19159
This theorem is referenced by:  cmetcaulem  19194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-z 10239  df-uz 10445  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ico 10878  df-rest 13605  df-psmet 16649  df-xmet 16650  df-bl 16652  df-fbas 16654  df-fg 16655  df-fil 17831  df-fm 17923  df-cfil 19161  df-cau 19162
  Copyright terms: Public domain W3C validator