MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubnd Structured version   Unicode version

Theorem caubnd 13400
Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 13320 . . . 4  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
21ralimi 2825 . . 3  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  A. k  e.  Z  ( abs `  ( F `  k
) )  e.  RR )
3 cau3.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
43r19.29uz 13392 . . . . . 6  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
54ex 435 . . . . 5  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
65ralimdv 2842 . . . 4  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
73caubnd2 13399 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. z  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)
86, 7syl6 34 . . 3  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. z  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
) )
9 fzssuz 11837 . . . . . . . 8  |-  ( M ... j )  C_  ( ZZ>= `  M )
109, 3sseqtr4i 3503 . . . . . . 7  |-  ( M ... j )  C_  Z
11 ssralv 3531 . . . . . . 7  |-  ( ( M ... j ) 
C_  Z  ->  ( A. k  e.  Z  ( abs `  ( F `
 k ) )  e.  RR  ->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  e.  RR ) )
1210, 11ax-mp 5 . . . . . 6  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  e.  RR )
13 fzfi 12182 . . . . . . . 8  |-  ( M ... j )  e. 
Fin
14 fimaxre3 10553 . . . . . . . 8  |-  ( ( ( M ... j
)  e.  Fin  /\  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  e.  RR )  ->  E. x  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <_  x )
1513, 14mpan 674 . . . . . . 7  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  e.  RR  ->  E. x  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <_  x )
16 peano2re 9805 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
1716adantl 467 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( x  +  1 )  e.  RR )
18 ltp1 10442 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  <  ( x  +  1 ) )
1918adantl 467 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  x  <  ( x  +  1 ) )
2016adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( x  +  1 )  e.  RR )
21 lelttr 9723 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR  /\  (
x  +  1 )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  <_  x  /\  x  <  ( x  +  1 ) )  ->  ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
2220, 21mpd3an3 1361 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( ( ( abs `  ( F `  k
) )  <_  x  /\  x  <  ( x  +  1 ) )  ->  ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
2319, 22mpan2d 678 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( ( abs `  ( F `  k )
)  <_  x  ->  ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) )
2423expcom 436 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( abs `  ( F `  k )
)  e.  RR  ->  ( ( abs `  ( F `  k )
)  <_  x  ->  ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) ) )
2524ralimdv 2842 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  e.  RR  ->  A. k  e.  ( M ... j
) ( ( abs `  ( F `  k
) )  <_  x  ->  ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) ) )
2625impcom 431 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  A. k  e.  ( M ... j ) ( ( abs `  ( F `  k )
)  <_  x  ->  ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) )
27 ralim 2821 . . . . . . . . . 10  |-  ( A. k  e.  ( M ... j ) ( ( abs `  ( F `
 k ) )  <_  x  ->  ( abs `  ( F `  k ) )  < 
( x  +  1 ) )  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <_  x  ->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
2826, 27syl 17 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <_  x  ->  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) )
29 breq2 4430 . . . . . . . . . . 11  |-  ( w  =  ( x  + 
1 )  ->  (
( abs `  ( F `  k )
)  <  w  <->  ( abs `  ( F `  k
) )  <  (
x  +  1 ) ) )
3029ralbidv 2871 . . . . . . . . . 10  |-  ( w  =  ( x  + 
1 )  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w  <->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
3130rspcev 3188 . . . . . . . . 9  |-  ( ( ( x  +  1 )  e.  RR  /\  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) )  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w )
3217, 28, 31syl6an 547 . . . . . . . 8  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <_  x  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w
) )
3332rexlimdva 2924 . . . . . . 7  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  e.  RR  ->  ( E. x  e.  RR  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <_  x  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w
) )
3415, 33mpd 15 . . . . . 6  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  e.  RR  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w )
3512, 34syl 17 . . . . 5  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  E. w  e.  RR  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w )
36 max1 11480 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  w  <_  if (
w  <_  z , 
z ,  w ) )
37363adant3 1025 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  w  <_  if ( w  <_ 
z ,  z ,  w ) )
38 simp3 1007 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  ( abs `  ( F `  k ) )  e.  RR )
39 simp1 1005 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  w  e.  RR )
40 ifcl 3957 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  if ( w  <_ 
z ,  z ,  w )  e.  RR )
4140ancoms 454 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  if ( w  <_ 
z ,  z ,  w )  e.  RR )
42413adant3 1025 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  if ( w  <_  z ,  z ,  w )  e.  RR )
43 ltletr 9724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  w  e.  RR  /\  if ( w  <_  z ,  z ,  w )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  <  w  /\  w  <_  if ( w  <_  z , 
z ,  w ) )  ->  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
4438, 39, 42, 43syl3anc 1264 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  <  w  /\  w  <_  if ( w  <_  z ,  z ,  w ) )  ->  ( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) )
4537, 44mpan2d 678 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( abs `  ( F `  k )
)  <  w  ->  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) )
46 max2 11482 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  z  <_  if (
w  <_  z , 
z ,  w ) )
47463adant3 1025 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  z  <_  if ( w  <_ 
z ,  z ,  w ) )
48 simp2 1006 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  z  e.  RR )
49 ltletr 9724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  z  e.  RR  /\  if ( w  <_  z ,  z ,  w )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  <  z  /\  z  <_  if ( w  <_  z , 
z ,  w ) )  ->  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
5038, 48, 42, 49syl3anc 1264 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  <  z  /\  z  <_  if ( w  <_  z ,  z ,  w ) )  ->  ( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) )
5147, 50mpan2d 678 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( abs `  ( F `  k )
)  <  z  ->  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) )
5245, 51jaod 381 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) )
53523expia 1207 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( ( abs `  ( F `  k )
)  e.  RR  ->  ( ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) ) )
5453ralimdv 2842 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  A. k  e.  Z  ( ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) ) )
55 ralim 2821 . . . . . . . . . . . . 13  |-  ( A. k  e.  Z  (
( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) )  ->  ( A. k  e.  Z  (
( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) )
5654, 55syl6 34 . . . . . . . . . . . 12  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) ) )
57 breq2 4430 . . . . . . . . . . . . . . . 16  |-  ( y  =  if ( w  <_  z ,  z ,  w )  -> 
( ( abs `  ( F `  k )
)  <  y  <->  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
5857ralbidv 2871 . . . . . . . . . . . . . . 15  |-  ( y  =  if ( w  <_  z ,  z ,  w )  -> 
( A. k  e.  Z  ( abs `  ( F `  k )
)  <  y  <->  A. k  e.  Z  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
5958rspcev 3188 . . . . . . . . . . . . . 14  |-  ( ( if ( w  <_ 
z ,  z ,  w )  e.  RR  /\ 
A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )
6059ex 435 . . . . . . . . . . . . 13  |-  ( if ( w  <_  z ,  z ,  w
)  e.  RR  ->  ( A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) )
6141, 60syl 17 . . . . . . . . . . . 12  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) )
6256, 61syl6d 71 . . . . . . . . . . 11  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) ) )
63 uzssz 11178 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ZZ>= `  M )  C_  ZZ
643, 63eqsstri 3500 . . . . . . . . . . . . . . . . . . . . 21  |-  Z  C_  ZZ
6564sseli 3466 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ZZ )
6664sseli 3466 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  Z  ->  j  e.  ZZ )
67 uztric 11180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  j  e.  ZZ )  ->  ( j  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  j ) ) )
6865, 66, 67syl2anr 480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  j ) ) )
69 simpr 462 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  k  e.  Z )
7069, 3syl6eleq 2527 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M ) )
71 elfzuzb 11792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( M ... j )  <->  ( k  e.  ( ZZ>= `  M )  /\  j  e.  ( ZZ>=
`  k ) ) )
7271baib 911 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( M ... j
)  <->  j  e.  (
ZZ>= `  k ) ) )
7370, 72syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  ( M ... j )  <-> 
j  e.  ( ZZ>= `  k ) ) )
7473orbi1d 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( M ... j
)  \/  k  e.  ( ZZ>= `  j )
)  <->  ( j  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>=
`  j ) ) ) )
7568, 74mpbird 235 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  ( M ... j )  \/  k  e.  (
ZZ>= `  j ) ) )
7675ex 435 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( k  e.  ( M ... j )  \/  k  e.  (
ZZ>= `  j ) ) ) )
77 pm3.48 841 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  ( M ... j )  ->  ( abs `  ( F `  k )
)  <  w )  /\  ( k  e.  (
ZZ>= `  j )  -> 
( abs `  ( F `  k )
)  <  z )
)  ->  ( (
k  e.  ( M ... j )  \/  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z ) ) )
7876, 77syl9 73 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  (
( ( k  e.  ( M ... j
)  ->  ( abs `  ( F `  k
) )  <  w
)  /\  ( k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k )
)  <  z )
)  ->  ( k  e.  Z  ->  ( ( abs `  ( F `
 k ) )  <  w  \/  ( abs `  ( F `  k ) )  < 
z ) ) ) )
7978alimdv 1756 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( A. k ( ( k  e.  ( M ... j )  ->  ( abs `  ( F `  k ) )  < 
w )  /\  (
k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k ) )  < 
z ) )  ->  A. k ( k  e.  Z  ->  ( ( abs `  ( F `  k ) )  < 
w  \/  ( abs `  ( F `  k
) )  <  z
) ) ) )
80 df-ral 2787 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w  <->  A. k ( k  e.  ( M ... j
)  ->  ( abs `  ( F `  k
) )  <  w
) )
81 df-ral 2787 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z  <->  A. k ( k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k )
)  <  z )
)
8280, 81anbi12i 701 . . . . . . . . . . . . . . . 16  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  <->  ( A. k
( k  e.  ( M ... j )  ->  ( abs `  ( F `  k )
)  <  w )  /\  A. k ( k  e.  ( ZZ>= `  j
)  ->  ( abs `  ( F `  k
) )  <  z
) ) )
83 19.26 1727 . . . . . . . . . . . . . . . 16  |-  ( A. k ( ( k  e.  ( M ... j )  ->  ( abs `  ( F `  k ) )  < 
w )  /\  (
k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k ) )  < 
z ) )  <->  ( A. k ( k  e.  ( M ... j
)  ->  ( abs `  ( F `  k
) )  <  w
)  /\  A. k
( k  e.  (
ZZ>= `  j )  -> 
( abs `  ( F `  k )
)  <  z )
) )
8482, 83bitr4i 255 . . . . . . . . . . . . . . 15  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  <->  A. k ( ( k  e.  ( M ... j )  -> 
( abs `  ( F `  k )
)  <  w )  /\  ( k  e.  (
ZZ>= `  j )  -> 
( abs `  ( F `  k )
)  <  z )
) )
85 df-ral 2787 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  Z  (
( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  <->  A. k
( k  e.  Z  ->  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z ) ) )
8679, 84, 853imtr4g 273 . . . . . . . . . . . . . 14  |-  ( j  e.  Z  ->  (
( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  ->  A. k  e.  Z  ( ( abs `  ( F `  k ) )  < 
w  \/  ( abs `  ( F `  k
) )  <  z
) ) )
87863impib 1203 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  ->  A. k  e.  Z  ( ( abs `  ( F `  k ) )  < 
w  \/  ( abs `  ( F `  k
) )  <  z
) )
8887imim1i 60 . . . . . . . . . . . 12  |-  ( ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )  -> 
( ( j  e.  Z  /\  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
)
89883expd 1222 . . . . . . . . . . 11  |-  ( ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )  -> 
( j  e.  Z  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) )
9062, 89syl6 34 . . . . . . . . . 10  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( j  e.  Z  -> 
( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9190com23 81 . . . . . . . . 9  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( j  e.  Z  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9291expimpd 606 . . . . . . . 8  |-  ( w  e.  RR  ->  (
( z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  Z  ( abs `  ( F `  k
) )  e.  RR  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9392com3r 82 . . . . . . 7  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( w  e.  RR  ->  ( (
z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9493com34 86 . . . . . 6  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( w  e.  RR  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w  ->  ( ( z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9594rexlimdv 2922 . . . . 5  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( E. w  e.  RR  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( ( z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  < 
y ) ) ) )
9635, 95mpd 15 . . . 4  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( (
z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  < 
y ) ) )
9796rexlimdvv 2930 . . 3  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( E. z  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  < 
y ) )
982, 8, 97sylsyld 58 . 2  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) )
9998imp 430 1  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    C_ wss 3442   ifcif 3915   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   Fincfn 7577   CCcc 9536   RRcr 9537   1c1 9539    + caddc 9541    < clt 9674    <_ cle 9675    - cmin 9859   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11782   abscabs 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278
This theorem is referenced by:  climbdd  13713
  Copyright terms: Public domain W3C validator