MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caublcls Structured version   Unicode version

Theorem caublcls 20819
Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2  |-  ( ph  ->  D  e.  ( *Met `  X ) )
caubl.3  |-  ( ph  ->  F : NN --> ( X  X.  RR+ ) )
caubl.4  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )
caublcls.6  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
caublcls  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  P  e.  ( ( cls `  J ) `
 ( ( ball `  D ) `  ( F `  A )
) ) )
Distinct variable groups:    D, n    n, F    n, X
Allowed substitution hints:    ph( n)    A( n)    P( n)    J( n)

Proof of Theorem caublcls
Dummy variables  k 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . 2  |-  ( ZZ>= `  A )  =  (
ZZ>= `  A )
2 caubl.2 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
323ad2ant1 1009 . . 3  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  D  e.  ( *Met `  X ) )
4 caublcls.6 . . . 4  |-  J  =  ( MetOpen `  D )
54mopntopon 20014 . . 3  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
63, 5syl 16 . 2  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  J  e.  (TopOn `  X ) )
7 simp3 990 . . 3  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  A  e.  NN )
87nnzd 10746 . 2  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  A  e.  ZZ )
9 simp2 989 . 2  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( 1st  o.  F
) ( ~~> t `  J ) P )
10 fveq2 5691 . . . . . . . . 9  |-  ( r  =  A  ->  ( F `  r )  =  ( F `  A ) )
1110fveq2d 5695 . . . . . . . 8  |-  ( r  =  A  ->  (
( ball `  D ) `  ( F `  r
) )  =  ( ( ball `  D
) `  ( F `  A ) ) )
1211sseq1d 3383 . . . . . . 7  |-  ( r  =  A  ->  (
( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  A ) )  <->  ( ( ball `  D ) `  ( F `  A ) )  C_  ( ( ball `  D ) `  ( F `  A ) ) ) )
1312imbi2d 316 . . . . . 6  |-  ( r  =  A  ->  (
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) )  <-> 
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  A ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) ) ) )
14 fveq2 5691 . . . . . . . . 9  |-  ( r  =  k  ->  ( F `  r )  =  ( F `  k ) )
1514fveq2d 5695 . . . . . . . 8  |-  ( r  =  k  ->  (
( ball `  D ) `  ( F `  r
) )  =  ( ( ball `  D
) `  ( F `  k ) ) )
1615sseq1d 3383 . . . . . . 7  |-  ( r  =  k  ->  (
( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  A ) )  <->  ( ( ball `  D ) `  ( F `  k ) )  C_  ( ( ball `  D ) `  ( F `  A ) ) ) )
1716imbi2d 316 . . . . . 6  |-  ( r  =  k  ->  (
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) )  <-> 
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  k ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) ) ) )
18 fveq2 5691 . . . . . . . . 9  |-  ( r  =  ( k  +  1 )  ->  ( F `  r )  =  ( F `  ( k  +  1 ) ) )
1918fveq2d 5695 . . . . . . . 8  |-  ( r  =  ( k  +  1 )  ->  (
( ball `  D ) `  ( F `  r
) )  =  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) ) )
2019sseq1d 3383 . . . . . . 7  |-  ( r  =  ( k  +  1 )  ->  (
( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  A ) )  <->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  A ) ) ) )
2120imbi2d 316 . . . . . 6  |-  ( r  =  ( k  +  1 )  ->  (
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) )  <-> 
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) ) ) )
22 ssid 3375 . . . . . . 7  |-  ( (
ball `  D ) `  ( F `  A
) )  C_  (
( ball `  D ) `  ( F `  A
) )
2322a1ii 27 . . . . . 6  |-  ( A  e.  ZZ  ->  (
( ph  /\  A  e.  NN )  ->  (
( ball `  D ) `  ( F `  A
) )  C_  (
( ball `  D ) `  ( F `  A
) ) ) )
24 caubl.4 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )
25 eluznn 10925 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  k  e.  ( ZZ>= `  A ) )  -> 
k  e.  NN )
26 oveq1 6098 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
2726fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  ( n  +  1 ) )  =  ( F `  ( k  +  1 ) ) )
2827fveq2d 5695 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( ball `  D ) `  ( F `  (
n  +  1 ) ) )  =  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) ) )
29 fveq2 5691 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
3029fveq2d 5695 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( ball `  D ) `  ( F `  n
) )  =  ( ( ball `  D
) `  ( F `  k ) ) )
3128, 30sseq12d 3385 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  <->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  k ) ) ) )
3231rspccva 3072 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  ( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  /\  k  e.  NN )  ->  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  k ) ) )
3324, 25, 32syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  ( A  e.  NN  /\  k  e.  ( ZZ>= `  A )
) )  ->  (
( ball `  D ) `  ( F `  (
k  +  1 ) ) )  C_  (
( ball `  D ) `  ( F `  k
) ) )
3433anassrs 648 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  k ) ) )
35 sstr2 3363 . . . . . . . . 9  |-  ( ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  k ) )  -> 
( ( ( ball `  D ) `  ( F `  k )
)  C_  ( ( ball `  D ) `  ( F `  A ) )  ->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  A ) ) ) )
3634, 35syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  A
) )  ->  (
( ball `  D ) `  ( F `  (
k  +  1 ) ) )  C_  (
( ball `  D ) `  ( F `  A
) ) ) )
3736expcom 435 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  A
)  ->  ( ( ph  /\  A  e.  NN )  ->  ( ( (
ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  A
) )  ->  (
( ball `  D ) `  ( F `  (
k  +  1 ) ) )  C_  (
( ball `  D ) `  ( F `  A
) ) ) ) )
3837a2d 26 . . . . . 6  |-  ( k  e.  ( ZZ>= `  A
)  ->  ( (
( ph  /\  A  e.  NN )  ->  (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  A
) ) )  -> 
( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  A ) ) ) ) )
3913, 17, 21, 17, 23, 38uzind4 10912 . . . . 5  |-  ( k  e.  ( ZZ>= `  A
)  ->  ( ( ph  /\  A  e.  NN )  ->  ( ( ball `  D ) `  ( F `  k )
)  C_  ( ( ball `  D ) `  ( F `  A ) ) ) )
4039impcom 430 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( ball `  D ) `  ( F `  k ) )  C_  ( ( ball `  D ) `  ( F `  A ) ) )
41403adantl2 1145 . . 3  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( ball `  D ) `  ( F `  k ) )  C_  ( ( ball `  D ) `  ( F `  A ) ) )
423adantr 465 . . . . 5  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  D  e.  ( *Met `  X
) )
43 simpl1 991 . . . . . . . 8  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ph )
44 caubl.3 . . . . . . . 8  |-  ( ph  ->  F : NN --> ( X  X.  RR+ ) )
4543, 44syl 16 . . . . . . 7  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  F : NN
--> ( X  X.  RR+ ) )
467, 25sylan 471 . . . . . . 7  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  k  e.  NN )
4745, 46ffvelrnd 5844 . . . . . 6  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( F `  k )  e.  ( X  X.  RR+ )
)
48 xp1st 6606 . . . . . 6  |-  ( ( F `  k )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( F `  k
) )  e.  X
)
4947, 48syl 16 . . . . 5  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( 1st `  ( F `  k
) )  e.  X
)
50 xp2nd 6607 . . . . . 6  |-  ( ( F `  k )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( F `  k
) )  e.  RR+ )
5147, 50syl 16 . . . . 5  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( 2nd `  ( F `  k
) )  e.  RR+ )
52 blcntr 19988 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( 1st `  ( F `  k )
)  e.  X  /\  ( 2nd `  ( F `
 k ) )  e.  RR+ )  ->  ( 1st `  ( F `  k ) )  e.  ( ( 1st `  ( F `  k )
) ( ball `  D
) ( 2nd `  ( F `  k )
) ) )
5342, 49, 51, 52syl3anc 1218 . . . 4  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( 1st `  ( F `  k
) )  e.  ( ( 1st `  ( F `  k )
) ( ball `  D
) ( 2nd `  ( F `  k )
) ) )
54 fvco3 5768 . . . . 5  |-  ( ( F : NN --> ( X  X.  RR+ )  /\  k  e.  NN )  ->  (
( 1st  o.  F
) `  k )  =  ( 1st `  ( F `  k )
) )
5545, 46, 54syl2anc 661 . . . 4  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( 1st  o.  F ) `  k )  =  ( 1st `  ( F `
 k ) ) )
56 1st2nd2 6613 . . . . . . 7  |-  ( ( F `  k )  e.  ( X  X.  RR+ )  ->  ( F `  k )  =  <. ( 1st `  ( F `
 k ) ) ,  ( 2nd `  ( F `  k )
) >. )
5747, 56syl 16 . . . . . 6  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( F `  k )  =  <. ( 1st `  ( F `
 k ) ) ,  ( 2nd `  ( F `  k )
) >. )
5857fveq2d 5695 . . . . 5  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( ball `  D ) `  ( F `  k ) )  =  ( (
ball `  D ) `  <. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >. )
)
59 df-ov 6094 . . . . 5  |-  ( ( 1st `  ( F `
 k ) ) ( ball `  D
) ( 2nd `  ( F `  k )
) )  =  ( ( ball `  D
) `  <. ( 1st `  ( F `  k
) ) ,  ( 2nd `  ( F `
 k ) )
>. )
6058, 59syl6eqr 2493 . . . 4  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( ball `  D ) `  ( F `  k ) )  =  ( ( 1st `  ( F `
 k ) ) ( ball `  D
) ( 2nd `  ( F `  k )
) ) )
6153, 55, 603eltr4d 2524 . . 3  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( 1st  o.  F ) `  k )  e.  ( ( ball `  D
) `  ( F `  k ) ) )
6241, 61sseldd 3357 . 2  |-  ( ( ( ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  /\  k  e.  ( ZZ>= `  A )
)  ->  ( ( 1st  o.  F ) `  k )  e.  ( ( ball `  D
) `  ( F `  A ) ) )
6344ffvelrnda 5843 . . . . . . 7  |-  ( (
ph  /\  A  e.  NN )  ->  ( F `
 A )  e.  ( X  X.  RR+ ) )
64633adant2 1007 . . . . . 6  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( F `  A
)  e.  ( X  X.  RR+ ) )
65 1st2nd2 6613 . . . . . 6  |-  ( ( F `  A )  e.  ( X  X.  RR+ )  ->  ( F `  A )  =  <. ( 1st `  ( F `
 A ) ) ,  ( 2nd `  ( F `  A )
) >. )
6664, 65syl 16 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( F `  A
)  =  <. ( 1st `  ( F `  A ) ) ,  ( 2nd `  ( F `  A )
) >. )
6766fveq2d 5695 . . . 4  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  A ) )  =  ( ( ball `  D
) `  <. ( 1st `  ( F `  A
) ) ,  ( 2nd `  ( F `
 A ) )
>. ) )
68 df-ov 6094 . . . 4  |-  ( ( 1st `  ( F `
 A ) ) ( ball `  D
) ( 2nd `  ( F `  A )
) )  =  ( ( ball `  D
) `  <. ( 1st `  ( F `  A
) ) ,  ( 2nd `  ( F `
 A ) )
>. )
6967, 68syl6eqr 2493 . . 3  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  A ) )  =  ( ( 1st `  ( F `  A )
) ( ball `  D
) ( 2nd `  ( F `  A )
) ) )
70 xp1st 6606 . . . . 5  |-  ( ( F `  A )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( F `  A
) )  e.  X
)
7164, 70syl 16 . . . 4  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( 1st `  ( F `  A )
)  e.  X )
72 xp2nd 6607 . . . . . 6  |-  ( ( F `  A )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( F `  A
) )  e.  RR+ )
7364, 72syl 16 . . . . 5  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( 2nd `  ( F `  A )
)  e.  RR+ )
7473rpxrd 11028 . . . 4  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( 2nd `  ( F `  A )
)  e.  RR* )
75 blssm 19993 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( 1st `  ( F `  A )
)  e.  X  /\  ( 2nd `  ( F `
 A ) )  e.  RR* )  ->  (
( 1st `  ( F `  A )
) ( ball `  D
) ( 2nd `  ( F `  A )
) )  C_  X
)
763, 71, 74, 75syl3anc 1218 . . 3  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( ( 1st `  ( F `  A )
) ( ball `  D
) ( 2nd `  ( F `  A )
) )  C_  X
)
7769, 76eqsstrd 3390 . 2  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  ( ( ball `  D
) `  ( F `  A ) )  C_  X )
781, 6, 8, 9, 62, 77lmcls 18906 1  |-  ( (
ph  /\  ( 1st  o.  F ) ( ~~> t `  J ) P  /\  A  e.  NN )  ->  P  e.  ( ( cls `  J ) `
 ( ( ball `  D ) `  ( F `  A )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715    C_ wss 3328   <.cop 3883   class class class wbr 4292    X. cxp 4838    o. ccom 4844   -->wf 5414   ` cfv 5418  (class class class)co 6091   1stc1st 6575   2ndc2nd 6576   1c1 9283    + caddc 9285   RR*cxr 9417   NNcn 10322   ZZcz 10646   ZZ>=cuz 10861   RR+crp 10991   *Metcxmt 17801   ballcbl 17803   MetOpencmopn 17806  TopOnctopon 18499   clsccl 18622   ~~> tclm 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-bl 17812  df-mopn 17813  df-top 18503  df-bases 18505  df-topon 18506  df-cld 18623  df-ntr 18624  df-cls 18625  df-lm 18833
This theorem is referenced by:  bcthlem3  20837  heiborlem8  28717
  Copyright terms: Public domain W3C validator