MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1un Structured version   Unicode version

Theorem cats1un 12681
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
Assertion
Ref Expression
cats1un  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A concat  <" B "> )  =  ( A  u.  { <. (
# `  A ) ,  B >. } ) )

Proof of Theorem cats1un
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 s1cl 12594 . . . . . 6  |-  ( B  e.  X  ->  <" B ">  e. Word  X )
2 ccatcl 12573 . . . . . 6  |-  ( ( A  e. Word  X  /\  <" B ">  e. Word  X )  ->  ( A concat  <" B "> )  e. Word  X )
31, 2sylan2 474 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A concat  <" B "> )  e. Word  X
)
4 wrdf 12534 . . . . 5  |-  ( ( A concat  <" B "> )  e. Word  X  -> 
( A concat  <" B "> ) : ( 0..^ ( # `  ( A concat  <" B "> ) ) ) --> X )
53, 4syl 16 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A concat  <" B "> ) : ( 0..^ ( # `  ( A concat  <" B "> ) ) ) --> X )
6 ccatlen 12574 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  <" B ">  e. Word  X )  ->  ( # `
 ( A concat  <" B "> ) )  =  ( ( # `  A
)  +  ( # `  <" B "> ) ) )
71, 6sylan2 474 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  ( A concat  <" B "> ) )  =  ( ( # `  A
)  +  ( # `  <" B "> ) ) )
8 s1len 12597 . . . . . . . . 9  |-  ( # `  <" B "> )  =  1
98oveq2i 6306 . . . . . . . 8  |-  ( (
# `  A )  +  ( # `  <" B "> )
)  =  ( (
# `  A )  +  1 )
107, 9syl6eq 2524 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  ( A concat  <" B "> ) )  =  ( ( # `  A
)  +  1 ) )
1110oveq2d 6311 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( # `  ( A concat  <" B "> ) ) )  =  ( 0..^ ( ( # `  A
)  +  1 ) ) )
12 lencl 12543 . . . . . . . . 9  |-  ( A  e. Word  X  ->  ( # `
 A )  e. 
NN0 )
1312adantr 465 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  NN0 )
14 nn0uz 11128 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  0 )
1513, 14syl6eleq 2565 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  ( ZZ>= ` 
0 ) )
16 fzosplitsn 11898 . . . . . . 7  |-  ( (
# `  A )  e.  ( ZZ>= `  0 )  ->  ( 0..^ ( (
# `  A )  +  1 ) )  =  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
1715, 16syl 16 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( (
# `  A )  +  1 ) )  =  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
1811, 17eqtrd 2508 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( # `  ( A concat  <" B "> ) ) )  =  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
1918feq2d 5724 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A concat  <" B "> ) : ( 0..^ ( # `  ( A concat  <" B "> ) ) ) --> X  <-> 
( A concat  <" B "> ) : ( ( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) --> X ) )
205, 19mpbid 210 . . 3  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A concat  <" B "> ) : ( ( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) --> X )
21 ffn 5737 . . 3  |-  ( ( A concat  <" B "> ) : ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) --> X  -> 
( A concat  <" B "> )  Fn  (
( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) )
2220, 21syl 16 . 2  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A concat  <" B "> )  Fn  (
( 0..^ ( # `  A ) )  u. 
{ ( # `  A
) } ) )
23 wrdf 12534 . . . . 5  |-  ( A  e. Word  X  ->  A : ( 0..^ (
# `  A )
) --> X )
2423adantr 465 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  A : ( 0..^ ( # `  A
) ) --> X )
25 eqid 2467 . . . . . 6  |-  { <. (
# `  A ) ,  B >. }  =  { <. ( # `  A
) ,  B >. }
26 fsng 6071 . . . . . 6  |-  ( ( ( # `  A
)  e.  NN0  /\  B  e.  X )  ->  ( { <. ( # `
 A ) ,  B >. } : {
( # `  A ) } --> { B }  <->  {
<. ( # `  A
) ,  B >. }  =  { <. ( # `
 A ) ,  B >. } ) )
2725, 26mpbiri 233 . . . . 5  |-  ( ( ( # `  A
)  e.  NN0  /\  B  e.  X )  ->  { <. ( # `  A
) ,  B >. } : { ( # `  A ) } --> { B } )
2812, 27sylan 471 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  { <. ( # `  A
) ,  B >. } : { ( # `  A ) } --> { B } )
29 fzonel 11821 . . . . . 6  |-  -.  ( # `
 A )  e.  ( 0..^ ( # `  A ) )
3029a1i 11 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  -.  ( # `  A
)  e.  ( 0..^ ( # `  A
) ) )
31 disjsn 4094 . . . . 5  |-  ( ( ( 0..^ ( # `  A ) )  i^i 
{ ( # `  A
) } )  =  (/) 
<->  -.  ( # `  A
)  e.  ( 0..^ ( # `  A
) ) )
3230, 31sylibr 212 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( 0..^ (
# `  A )
)  i^i  { ( # `
 A ) } )  =  (/) )
33 fun 5754 . . . 4  |-  ( ( ( A : ( 0..^ ( # `  A
) ) --> X  /\  {
<. ( # `  A
) ,  B >. } : { ( # `  A ) } --> { B } )  /\  (
( 0..^ ( # `  A ) )  i^i 
{ ( # `  A
) } )  =  (/) )  ->  ( A  u.  { <. ( # `
 A ) ,  B >. } ) : ( ( 0..^ (
# `  A )
)  u.  { (
# `  A ) } ) --> ( X  u.  { B }
) )
3424, 28, 32, 33syl21anc 1227 . . 3  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A  u.  { <. ( # `  A
) ,  B >. } ) : ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) --> ( X  u.  { B }
) )
35 ffn 5737 . . 3  |-  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) : ( ( 0..^ (
# `  A )
)  u.  { (
# `  A ) } ) --> ( X  u.  { B }
)  ->  ( A  u.  { <. ( # `  A
) ,  B >. } )  Fn  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
3634, 35syl 16 . 2  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A  u.  { <. ( # `  A
) ,  B >. } )  Fn  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } ) )
37 elun 3650 . . 3  |-  ( x  e.  ( ( 0..^ ( # `  A
) )  u.  {
( # `  A ) } )  <->  ( x  e.  ( 0..^ ( # `  A ) )  \/  x  e.  { (
# `  A ) } ) )
38 ccatval1 12575 . . . . . . 7  |-  ( ( A  e. Word  X  /\  <" B ">  e. Word  X  /\  x  e.  ( 0..^ ( # `  A ) ) )  ->  ( ( A concat  <" B "> ) `  x )  =  ( A `  x ) )
391, 38syl3an2 1262 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A concat  <" B "> ) `  x
)  =  ( A `
 x ) )
40393expa 1196 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A concat  <" B "> ) `  x
)  =  ( A `
 x ) )
41 simpr 461 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  ->  x  e.  ( 0..^ ( # `  A
) ) )
42 nelne2 2797 . . . . . . . 8  |-  ( ( x  e.  ( 0..^ ( # `  A
) )  /\  -.  ( # `  A )  e.  ( 0..^ (
# `  A )
) )  ->  x  =/=  ( # `  A
) )
4341, 29, 42sylancl 662 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  ->  x  =/=  ( # `  A
) )
4443necomd 2738 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( # `  A )  =/=  x )
45 fvunsn 6104 . . . . . 6  |-  ( (
# `  A )  =/=  x  ->  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  x )  =  ( A `  x ) )
4644, 45syl 16 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A  u.  {
<. ( # `  A
) ,  B >. } ) `  x )  =  ( A `  x ) )
4740, 46eqtr4d 2511 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( # `  A
) ) )  -> 
( ( A concat  <" B "> ) `  x
)  =  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) `  x ) )
48 fvex 5882 . . . . . . . . 9  |-  ( # `  A )  e.  _V
4948a1i 11 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  _V )
50 elex 3127 . . . . . . . . 9  |-  ( B  e.  X  ->  B  e.  _V )
5150adantl 466 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  B  e.  _V )
52 fdm 5741 . . . . . . . . . . 11  |-  ( A : ( 0..^ (
# `  A )
) --> X  ->  dom  A  =  ( 0..^ (
# `  A )
) )
5324, 52syl 16 . . . . . . . . . 10  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  dom  A  =  ( 0..^ ( # `  A
) ) )
5453eleq2d 2537 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( # `  A
)  e.  dom  A  <->  (
# `  A )  e.  ( 0..^ ( # `  A ) ) ) )
5529, 54mtbiri 303 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  -.  ( # `  A
)  e.  dom  A
)
56 fsnunfv 6112 . . . . . . . 8  |-  ( ( ( # `  A
)  e.  _V  /\  B  e.  _V  /\  -.  ( # `  A )  e.  dom  A )  ->  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  ( # `  A ) )  =  B )
5749, 51, 55, 56syl3anc 1228 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A  u.  {
<. ( # `  A
) ,  B >. } ) `  ( # `  A ) )  =  B )
58 simpl 457 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  A  e. Word  X )
591adantl 466 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  <" B ">  e. Word  X )
60 1nn 10559 . . . . . . . . . . . 12  |-  1  e.  NN
618, 60eqeltri 2551 . . . . . . . . . . 11  |-  ( # `  <" B "> )  e.  NN
6261a1i 11 . . . . . . . . . 10  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  <" B "> )  e.  NN )
63 lbfzo0 11842 . . . . . . . . . 10  |-  ( 0  e.  ( 0..^ (
# `  <" B "> ) )  <->  ( # `  <" B "> )  e.  NN )
6462, 63sylibr 212 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  0  e.  ( 0..^ ( # `  <" B "> )
) )
65 ccatval3 12577 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  <" B ">  e. Word  X  /\  0  e.  ( 0..^ ( # `  <" B "> ) ) )  -> 
( ( A concat  <" B "> ) `  (
0  +  ( # `  A ) ) )  =  ( <" B "> `  0 )
)
6658, 59, 64, 65syl3anc 1228 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A concat  <" B "> ) `  (
0  +  ( # `  A ) ) )  =  ( <" B "> `  0 )
)
67 s1fv 12599 . . . . . . . . 9  |-  ( B  e.  X  ->  ( <" B "> `  0 )  =  B )
6867adantl 466 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( <" B "> `  0 )  =  B )
6966, 68eqtrd 2508 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A concat  <" B "> ) `  (
0  +  ( # `  A ) ) )  =  B )
7013nn0cnd 10866 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( # `  A
)  e.  CC )
7170addid2d 9792 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0  +  (
# `  A )
)  =  ( # `  A ) )
7271fveq2d 5876 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A concat  <" B "> ) `  (
0  +  ( # `  A ) ) )  =  ( ( A concat  <" B "> ) `  ( # `  A
) ) )
7357, 69, 723eqtr2rd 2515 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A concat  <" B "> ) `  ( # `
 A ) )  =  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  ( # `  A ) ) )
74 elsni 4058 . . . . . . . 8  |-  ( x  e.  { ( # `  A ) }  ->  x  =  ( # `  A
) )
7574fveq2d 5876 . . . . . . 7  |-  ( x  e.  { ( # `  A ) }  ->  ( ( A concat  <" B "> ) `  x
)  =  ( ( A concat  <" B "> ) `  ( # `  A ) ) )
7674fveq2d 5876 . . . . . . 7  |-  ( x  e.  { ( # `  A ) }  ->  ( ( A  u.  { <. ( # `  A
) ,  B >. } ) `  x )  =  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  ( # `  A ) ) )
7775, 76eqeq12d 2489 . . . . . 6  |-  ( x  e.  { ( # `  A ) }  ->  ( ( ( A concat  <" B "> ) `  x
)  =  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) `  x )  <->  ( ( A concat  <" B "> ) `  ( # `  A ) )  =  ( ( A  u.  {
<. ( # `  A
) ,  B >. } ) `  ( # `  A ) ) ) )
7873, 77syl5ibrcom 222 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( x  e.  {
( # `  A ) }  ->  ( ( A concat  <" B "> ) `  x )  =  ( ( A  u.  { <. ( # `
 A ) ,  B >. } ) `  x ) ) )
7978imp 429 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  { ( # `  A
) } )  -> 
( ( A concat  <" B "> ) `  x
)  =  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) `  x ) )
8047, 79jaodan 783 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  ( x  e.  ( 0..^ ( # `  A ) )  \/  x  e.  { (
# `  A ) } ) )  -> 
( ( A concat  <" B "> ) `  x
)  =  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) `  x ) )
8137, 80sylan2b 475 . 2  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( ( 0..^ (
# `  A )
)  u.  { (
# `  A ) } ) )  -> 
( ( A concat  <" B "> ) `  x
)  =  ( ( A  u.  { <. (
# `  A ) ,  B >. } ) `  x ) )
8222, 36, 81eqfnfvd 5985 1  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A concat  <" B "> )  =  ( A  u.  { <. (
# `  A ) ,  B >. } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3118    u. cun 3479    i^i cin 3480   (/)c0 3790   {csn 4033   <.cop 4039   dom cdm 5005    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   0cc0 9504   1c1 9505    + caddc 9507   NNcn 10548   NN0cn0 10807   ZZ>=cuz 11094  ..^cfzo 11804   #chash 12385  Word cword 12515   concat cconcat 12517   <"cs1 12518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-hash 12386  df-word 12523  df-concat 12525  df-s1 12526
This theorem is referenced by:  s2prop  12842  s4prop  12843  pgpfaclem1  17004  wwlknext  24547  vdegp1ai  24807  vdegp1bi  24808
  Copyright terms: Public domain W3C validator