MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1cld Structured version   Unicode version

Theorem cats1cld 12953
Description: Closure of concatenation with a singleton. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1  |-  T  =  ( S ++  <" X "> )
cats1cld.2  |-  ( ph  ->  S  e. Word  A )
cats1cld.3  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
cats1cld  |-  ( ph  ->  T  e. Word  A )

Proof of Theorem cats1cld
StepHypRef Expression
1 cats1cld.1 . 2  |-  T  =  ( S ++  <" X "> )
2 cats1cld.2 . . 3  |-  ( ph  ->  S  e. Word  A )
3 cats1cld.3 . . . 4  |-  ( ph  ->  X  e.  A )
43s1cld 12746 . . 3  |-  ( ph  ->  <" X ">  e. Word  A )
5 ccatcl 12724 . . 3  |-  ( ( S  e. Word  A  /\  <" X ">  e. Word  A )  ->  ( S ++  <" X "> )  e. Word  A )
62, 4, 5syl2anc 665 . 2  |-  ( ph  ->  ( S ++  <" X "> )  e. Word  A
)
71, 6syl5eqel 2511 1  |-  ( ph  ->  T  e. Word  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1872  (class class class)co 6305  Word cword 12660   ++ cconcat 12662   <"cs1 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-fzo 11923  df-hash 12522  df-word 12668  df-concat 12670  df-s1 12671
This theorem is referenced by:  s2cld  12967  s3cld  12968  s4cld  12969  s5cld  12970  s6cld  12971  s7cld  12972  s8cld  12973  pgpfaclem1  17713  konigsberg  25713
  Copyright terms: Public domain W3C validator