MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catlid Structured version   Unicode version

Theorem catlid 14621
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b  |-  B  =  ( Base `  C
)
catidcl.h  |-  H  =  ( Hom  `  C
)
catidcl.i  |-  .1.  =  ( Id `  C )
catidcl.c  |-  ( ph  ->  C  e.  Cat )
catidcl.x  |-  ( ph  ->  X  e.  B )
catlid.o  |-  .x.  =  (comp `  C )
catlid.y  |-  ( ph  ->  Y  e.  B )
catlid.f  |-  ( ph  ->  F  e.  ( X H Y ) )
Assertion
Ref Expression
catlid  |-  ( ph  ->  ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )

Proof of Theorem catlid
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catlid.f . 2  |-  ( ph  ->  F  e.  ( X H Y ) )
2 catidcl.x . . 3  |-  ( ph  ->  X  e.  B )
3 simpl 457 . . . . . . . 8  |-  ( ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f )
43ralimi 2791 . . . . . . 7  |-  ( A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f )
54a1i 11 . . . . . 6  |-  ( g  e.  ( Y H Y )  ->  ( A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f ) )
65ss2rabi 3434 . . . . 5  |-  { g  e.  ( Y H Y )  |  A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) }  C_  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f }
7 catidcl.b . . . . . . 7  |-  B  =  ( Base `  C
)
8 catidcl.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
9 catlid.o . . . . . . 7  |-  .x.  =  (comp `  C )
10 catidcl.c . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
11 catidcl.i . . . . . . 7  |-  .1.  =  ( Id `  C )
12 catlid.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
137, 8, 9, 10, 11, 12cidval 14615 . . . . . 6  |-  ( ph  ->  (  .1.  `  Y
)  =  ( iota_ g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) ) )
147, 8, 9, 10, 12catideu 14613 . . . . . . 7  |-  ( ph  ->  E! g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) )
15 riotacl2 6066 . . . . . . 7  |-  ( E! g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  ( iota_ g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) )  e.  {
g  e.  ( Y H Y )  | 
A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) } )
1614, 15syl 16 . . . . . 6  |-  ( ph  ->  ( iota_ g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) )  e.  {
g  e.  ( Y H Y )  | 
A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) } )
1713, 16eqeltrd 2517 . . . . 5  |-  ( ph  ->  (  .1.  `  Y
)  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) } )
186, 17sseldi 3354 . . . 4  |-  ( ph  ->  (  .1.  `  Y
)  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f } )
19 oveq1 6098 . . . . . . . 8  |-  ( g  =  (  .1.  `  Y )  ->  (
g ( <. x ,  Y >.  .x.  Y ) f )  =  ( (  .1.  `  Y
) ( <. x ,  Y >.  .x.  Y ) f ) )
2019eqeq1d 2451 . . . . . . 7  |-  ( g  =  (  .1.  `  Y )  ->  (
( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  ( (  .1.  `  Y ) (
<. x ,  Y >.  .x. 
Y ) f )  =  f ) )
21202ralbidv 2757 . . . . . 6  |-  ( g  =  (  .1.  `  Y )  ->  ( A. x  e.  B  A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  A. x  e.  B  A. f  e.  ( x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f ) )
2221elrab 3117 . . . . 5  |-  ( (  .1.  `  Y )  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f }  <->  ( (  .1.  `  Y )  e.  ( Y H Y )  /\  A. x  e.  B  A. f  e.  ( x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f ) )
2322simprbi 464 . . . 4  |-  ( (  .1.  `  Y )  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f }  ->  A. x  e.  B  A. f  e.  ( x H Y ) ( (  .1.  `  Y )
( <. x ,  Y >.  .x.  Y ) f )  =  f )
2418, 23syl 16 . . 3  |-  ( ph  ->  A. x  e.  B  A. f  e.  (
x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f )
25 oveq1 6098 . . . . 5  |-  ( x  =  X  ->  (
x H Y )  =  ( X H Y ) )
26 opeq1 4059 . . . . . . . 8  |-  ( x  =  X  ->  <. x ,  Y >.  =  <. X ,  Y >. )
2726oveq1d 6106 . . . . . . 7  |-  ( x  =  X  ->  ( <. x ,  Y >.  .x. 
Y )  =  (
<. X ,  Y >.  .x. 
Y ) )
2827oveqd 6108 . . . . . 6  |-  ( x  =  X  ->  (
(  .1.  `  Y
) ( <. x ,  Y >.  .x.  Y ) f )  =  ( (  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y )
f ) )
2928eqeq1d 2451 . . . . 5  |-  ( x  =  X  ->  (
( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  ( (  .1.  `  Y ) (
<. X ,  Y >.  .x. 
Y ) f )  =  f ) )
3025, 29raleqbidv 2931 . . . 4  |-  ( x  =  X  ->  ( A. f  e.  (
x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  A. f  e.  ( X H Y ) ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f ) )
3130rspcv 3069 . . 3  |-  ( X  e.  B  ->  ( A. x  e.  B  A. f  e.  (
x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  ->  A. f  e.  ( X H Y ) ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f ) )
322, 24, 31sylc 60 . 2  |-  ( ph  ->  A. f  e.  ( X H Y ) ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f )
33 oveq2 6099 . . . 4  |-  ( f  =  F  ->  (
(  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y )
f )  =  ( (  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y ) F ) )
34 id 22 . . . 4  |-  ( f  =  F  ->  f  =  F )
3533, 34eqeq12d 2457 . . 3  |-  ( f  =  F  ->  (
( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f  <->  ( (  .1.  `  Y ) (
<. X ,  Y >.  .x. 
Y ) F )  =  F ) )
3635rspcv 3069 . 2  |-  ( F  e.  ( X H Y )  ->  ( A. f  e.  ( X H Y ) ( (  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y )
f )  =  f  ->  ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F ) )
371, 32, 36sylc 60 1  |-  ( ph  ->  ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E!wreu 2717   {crab 2719   <.cop 3883   ` cfv 5418   iota_crio 6051  (class class class)co 6091   Basecbs 14174   Hom chom 14249  compcco 14250   Catccat 14602   Idccid 14603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-cat 14606  df-cid 14607
This theorem is referenced by:  oppccatid  14658  sectcan  14694  sectco  14695  sectmon  14716  monsect  14717  subccatid  14756  fucidcl  14875  fuclid  14876  invfuc  14884  arwlid  14940  xpccatid  14998  evlfcl  15032  curf1cl  15038  curf2cl  15041  curfcl  15042  curfuncf  15048  uncfcurf  15049  hofcl  15069  yon12  15075  yon2  15076  yonedalem3b  15089  yonedainv  15091
  Copyright terms: Public domain W3C validator