MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catlid Structured version   Unicode version

Theorem catlid 14931
Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b  |-  B  =  ( Base `  C
)
catidcl.h  |-  H  =  ( Hom  `  C
)
catidcl.i  |-  .1.  =  ( Id `  C )
catidcl.c  |-  ( ph  ->  C  e.  Cat )
catidcl.x  |-  ( ph  ->  X  e.  B )
catlid.o  |-  .x.  =  (comp `  C )
catlid.y  |-  ( ph  ->  Y  e.  B )
catlid.f  |-  ( ph  ->  F  e.  ( X H Y ) )
Assertion
Ref Expression
catlid  |-  ( ph  ->  ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )

Proof of Theorem catlid
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catlid.f . 2  |-  ( ph  ->  F  e.  ( X H Y ) )
2 catidcl.x . . 3  |-  ( ph  ->  X  e.  B )
3 simpl 457 . . . . . . . 8  |-  ( ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f )
43ralimi 2857 . . . . . . 7  |-  ( A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f )
54a1i 11 . . . . . 6  |-  ( g  e.  ( Y H Y )  ->  ( A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f ) )
65ss2rabi 3582 . . . . 5  |-  { g  e.  ( Y H Y )  |  A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) }  C_  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f }
7 catidcl.b . . . . . . 7  |-  B  =  ( Base `  C
)
8 catidcl.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
9 catlid.o . . . . . . 7  |-  .x.  =  (comp `  C )
10 catidcl.c . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
11 catidcl.i . . . . . . 7  |-  .1.  =  ( Id `  C )
12 catlid.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
137, 8, 9, 10, 11, 12cidval 14925 . . . . . 6  |-  ( ph  ->  (  .1.  `  Y
)  =  ( iota_ g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) ) )
147, 8, 9, 10, 12catideu 14923 . . . . . . 7  |-  ( ph  ->  E! g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) )
15 riotacl2 6257 . . . . . . 7  |-  ( E! g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f )  ->  ( iota_ g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) )  e.  {
g  e.  ( Y H Y )  | 
A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) } )
1614, 15syl 16 . . . . . 6  |-  ( ph  ->  ( iota_ g  e.  ( Y H Y ) A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) )  e.  {
g  e.  ( Y H Y )  | 
A. x  e.  B  ( A. f  e.  ( x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) } )
1713, 16eqeltrd 2555 . . . . 5  |-  ( ph  ->  (  .1.  `  Y
)  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  ( A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  /\  A. f  e.  ( Y H x ) ( f ( <. Y ,  Y >.  .x.  x )
g )  =  f ) } )
186, 17sseldi 3502 . . . 4  |-  ( ph  ->  (  .1.  `  Y
)  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g ( <. x ,  Y >.  .x.  Y ) f )  =  f } )
19 oveq1 6289 . . . . . . . 8  |-  ( g  =  (  .1.  `  Y )  ->  (
g ( <. x ,  Y >.  .x.  Y ) f )  =  ( (  .1.  `  Y
) ( <. x ,  Y >.  .x.  Y ) f ) )
2019eqeq1d 2469 . . . . . . 7  |-  ( g  =  (  .1.  `  Y )  ->  (
( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  ( (  .1.  `  Y ) (
<. x ,  Y >.  .x. 
Y ) f )  =  f ) )
21202ralbidv 2908 . . . . . 6  |-  ( g  =  (  .1.  `  Y )  ->  ( A. x  e.  B  A. f  e.  (
x H Y ) ( g ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  A. x  e.  B  A. f  e.  ( x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f ) )
2221elrab 3261 . . . . 5  |-  ( (  .1.  `  Y )  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f }  <->  ( (  .1.  `  Y )  e.  ( Y H Y )  /\  A. x  e.  B  A. f  e.  ( x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f ) )
2322simprbi 464 . . . 4  |-  ( (  .1.  `  Y )  e.  { g  e.  ( Y H Y )  |  A. x  e.  B  A. f  e.  ( x H Y ) ( g (
<. x ,  Y >.  .x. 
Y ) f )  =  f }  ->  A. x  e.  B  A. f  e.  ( x H Y ) ( (  .1.  `  Y )
( <. x ,  Y >.  .x.  Y ) f )  =  f )
2418, 23syl 16 . . 3  |-  ( ph  ->  A. x  e.  B  A. f  e.  (
x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f )
25 oveq1 6289 . . . . 5  |-  ( x  =  X  ->  (
x H Y )  =  ( X H Y ) )
26 opeq1 4213 . . . . . . . 8  |-  ( x  =  X  ->  <. x ,  Y >.  =  <. X ,  Y >. )
2726oveq1d 6297 . . . . . . 7  |-  ( x  =  X  ->  ( <. x ,  Y >.  .x. 
Y )  =  (
<. X ,  Y >.  .x. 
Y ) )
2827oveqd 6299 . . . . . 6  |-  ( x  =  X  ->  (
(  .1.  `  Y
) ( <. x ,  Y >.  .x.  Y ) f )  =  ( (  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y )
f ) )
2928eqeq1d 2469 . . . . 5  |-  ( x  =  X  ->  (
( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  ( (  .1.  `  Y ) (
<. X ,  Y >.  .x. 
Y ) f )  =  f ) )
3025, 29raleqbidv 3072 . . . 4  |-  ( x  =  X  ->  ( A. f  e.  (
x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  <->  A. f  e.  ( X H Y ) ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f ) )
3130rspcv 3210 . . 3  |-  ( X  e.  B  ->  ( A. x  e.  B  A. f  e.  (
x H Y ) ( (  .1.  `  Y ) ( <.
x ,  Y >.  .x. 
Y ) f )  =  f  ->  A. f  e.  ( X H Y ) ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f ) )
322, 24, 31sylc 60 . 2  |-  ( ph  ->  A. f  e.  ( X H Y ) ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f )
33 oveq2 6290 . . . 4  |-  ( f  =  F  ->  (
(  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y )
f )  =  ( (  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y ) F ) )
34 id 22 . . . 4  |-  ( f  =  F  ->  f  =  F )
3533, 34eqeq12d 2489 . . 3  |-  ( f  =  F  ->  (
( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) f )  =  f  <->  ( (  .1.  `  Y ) (
<. X ,  Y >.  .x. 
Y ) F )  =  F ) )
3635rspcv 3210 . 2  |-  ( F  e.  ( X H Y )  ->  ( A. f  e.  ( X H Y ) ( (  .1.  `  Y
) ( <. X ,  Y >.  .x.  Y )
f )  =  f  ->  ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F ) )
371, 32, 36sylc 60 1  |-  ( ph  ->  ( (  .1.  `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E!wreu 2816   {crab 2818   <.cop 4033   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14483   Hom chom 14559  compcco 14560   Catccat 14912   Idccid 14913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-cat 14916  df-cid 14917
This theorem is referenced by:  oppccatid  14968  sectcan  15004  sectco  15005  sectmon  15026  monsect  15027  subccatid  15066  fucidcl  15185  fuclid  15186  invfuc  15194  arwlid  15250  xpccatid  15308  evlfcl  15342  curf1cl  15348  curf2cl  15351  curfcl  15352  curfuncf  15358  uncfcurf  15359  hofcl  15379  yon12  15385  yon2  15386  yonedalem3b  15399  yonedainv  15401
  Copyright terms: Public domain W3C validator