MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidcl Unicode version

Theorem catidcl 13862
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b  |-  B  =  ( Base `  C
)
catidcl.h  |-  H  =  (  Hom  `  C
)
catidcl.i  |-  .1.  =  ( Id `  C )
catidcl.c  |-  ( ph  ->  C  e.  Cat )
catidcl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
catidcl  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X H X ) )

Proof of Theorem catidcl
Dummy variables  f 
g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catidcl.b . . 3  |-  B  =  ( Base `  C
)
2 catidcl.h . . 3  |-  H  =  (  Hom  `  C
)
3 eqid 2404 . . 3  |-  (comp `  C )  =  (comp `  C )
4 catidcl.c . . 3  |-  ( ph  ->  C  e.  Cat )
5 catidcl.i . . 3  |-  .1.  =  ( Id `  C )
6 catidcl.x . . 3  |-  ( ph  ->  X  e.  B )
71, 2, 3, 4, 5, 6cidval 13857 . 2  |-  ( ph  ->  (  .1.  `  X
)  =  ( iota_ g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <. y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f ( <. X ,  X >. (comp `  C
) y ) g )  =  f ) ) )
81, 2, 3, 4, 6catideu 13855 . . 3  |-  ( ph  ->  E! g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <.
y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f (
<. X ,  X >. (comp `  C ) y ) g )  =  f ) )
9 riotacl 6523 . . 3  |-  ( E! g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  (
y H X ) ( g ( <.
y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f (
<. X ,  X >. (comp `  C ) y ) g )  =  f )  ->  ( iota_ g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <. y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f ( <. X ,  X >. (comp `  C
) y ) g )  =  f ) )  e.  ( X H X ) )
108, 9syl 16 . 2  |-  ( ph  ->  ( iota_ g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <.
y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f (
<. X ,  X >. (comp `  C ) y ) g )  =  f ) )  e.  ( X H X ) )
117, 10eqeltrd 2478 1  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X H X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E!wreu 2668   <.cop 3777   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424    Hom chom 13495  compcco 13496   Catccat 13844   Idccid 13845
This theorem is referenced by:  oppccatid  13900  monsect  13959  fullsubc  14002  idfucl  14033  cofucl  14040  fthsect  14077  fucidcl  14117  idahom  14170  catcisolem  14216  xpccatid  14240  1stfcl  14249  2ndfcl  14250  prfcl  14255  evlfcl  14274  curf1cl  14280  curf2cl  14283  curfcl  14284  curfuncf  14290  uncfcurf  14291  diag12  14296  diag2  14297  curf2ndf  14299  hofcl  14311  yon12  14317  yon2  14318  yonedalem3a  14326  yonedalem3b  14331  yonedainv  14333
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-riota 6508  df-cat 13848  df-cid 13849
  Copyright terms: Public domain W3C validator