MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidcl Structured version   Unicode version

Theorem catidcl 14933
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catidcl.b  |-  B  =  ( Base `  C
)
catidcl.h  |-  H  =  ( Hom  `  C
)
catidcl.i  |-  .1.  =  ( Id `  C )
catidcl.c  |-  ( ph  ->  C  e.  Cat )
catidcl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
catidcl  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X H X ) )

Proof of Theorem catidcl
Dummy variables  f 
g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catidcl.b . . 3  |-  B  =  ( Base `  C
)
2 catidcl.h . . 3  |-  H  =  ( Hom  `  C
)
3 eqid 2467 . . 3  |-  (comp `  C )  =  (comp `  C )
4 catidcl.c . . 3  |-  ( ph  ->  C  e.  Cat )
5 catidcl.i . . 3  |-  .1.  =  ( Id `  C )
6 catidcl.x . . 3  |-  ( ph  ->  X  e.  B )
71, 2, 3, 4, 5, 6cidval 14928 . 2  |-  ( ph  ->  (  .1.  `  X
)  =  ( iota_ g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <. y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f ( <. X ,  X >. (comp `  C
) y ) g )  =  f ) ) )
81, 2, 3, 4, 6catideu 14926 . . 3  |-  ( ph  ->  E! g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <.
y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f (
<. X ,  X >. (comp `  C ) y ) g )  =  f ) )
9 riotacl 6258 . . 3  |-  ( E! g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  (
y H X ) ( g ( <.
y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f (
<. X ,  X >. (comp `  C ) y ) g )  =  f )  ->  ( iota_ g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <. y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f ( <. X ,  X >. (comp `  C
) y ) g )  =  f ) )  e.  ( X H X ) )
108, 9syl 16 . 2  |-  ( ph  ->  ( iota_ g  e.  ( X H X ) A. y  e.  B  ( A. f  e.  ( y H X ) ( g ( <.
y ,  X >. (comp `  C ) X ) f )  =  f  /\  A. f  e.  ( X H y ) ( f (
<. X ,  X >. (comp `  C ) y ) g )  =  f ) )  e.  ( X H X ) )
117, 10eqeltrd 2555 1  |-  ( ph  ->  (  .1.  `  X
)  e.  ( X H X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E!wreu 2816   <.cop 4033   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14486   Hom chom 14562  compcco 14563   Catccat 14915   Idccid 14916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-cat 14919  df-cid 14920
This theorem is referenced by:  oppccatid  14971  monsect  15030  fullsubc  15073  idfucl  15104  cofucl  15111  fthsect  15148  fucidcl  15188  idahom  15241  catcisolem  15287  xpccatid  15311  1stfcl  15320  2ndfcl  15321  prfcl  15326  evlfcl  15345  curf1cl  15351  curf2cl  15354  curfcl  15355  curfuncf  15361  uncfcurf  15362  diag12  15367  diag2  15368  curf2ndf  15370  hofcl  15382  yon12  15388  yon2  15389  yonedalem3a  15397  yonedalem3b  15402  yonedainv  15404
  Copyright terms: Public domain W3C validator