MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcval Structured version   Unicode version

Theorem catcval 14956
Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcval.c  |-  C  =  (CatCat `  U )
catcval.u  |-  ( ph  ->  U  e.  V )
catcval.b  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
catcval.h  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x 
Func  y ) ) )
catcval.o  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v )  Func  z
) ,  f  e.  (  Func  `  v ) 
|->  ( g  o.func  f )
) ) )
Assertion
Ref Expression
catcval  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    x, v,
y, z, B    ph, v, x, y, z    v, U, x, y, z    f,
g, v, x, y, z
Allowed substitution hints:    ph( f, g)    B( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem catcval
Dummy variables  u  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcval.c . 2  |-  C  =  (CatCat `  U )
2 df-catc 14955 . . . 4  |- CatCat  =  ( u  e.  _V  |->  [_ ( u  i^i  Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. } )
32a1i 11 . . 3  |-  ( ph  -> CatCat 
=  ( u  e. 
_V  |->  [_ ( u  i^i 
Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. } ) )
4 vex 2970 . . . . . 6  |-  u  e. 
_V
54inex1 4428 . . . . 5  |-  ( u  i^i  Cat )  e. 
_V
65a1i 11 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Cat )  e.  _V )
7 simpr 461 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  u  =  U )
87ineq1d 3546 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Cat )  =  ( U  i^i  Cat ) )
9 catcval.b . . . . . 6  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
109adantr 465 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  B  =  ( U  i^i  Cat ) )
118, 10eqtr4d 2473 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Cat )  =  B )
12 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  b  =  B )
1312opeq2d 4061 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
14 eqidd 2439 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  Func  y )  =  ( x  Func  y ) )
1512, 12, 14mpt2eq123dv 6143 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x  Func  y )
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
Func  y ) ) )
16 catcval.h . . . . . . . 8  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x 
Func  y ) ) )
1716ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x  Func  y ) ) )
1815, 17eqtr4d 2473 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x  Func  y )
)  =  H )
1918opeq2d 4061 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  Func  y
) ) >.  =  <. ( Hom  `  ndx ) ,  H >. )
2012, 12xpeq12d 4860 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
21 eqidd 2439 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) )  =  ( g  e.  ( ( 2nd `  v
)  Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
2220, 12, 21mpt2eq123dv 6143 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )  =  ( v  e.  ( B  X.  B
) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v
)  Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) ) )
23 catcval.o . . . . . . . 8  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v )  Func  z
) ,  f  e.  (  Func  `  v ) 
|->  ( g  o.func  f )
) ) )
2423ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v
)  Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) ) )
2522, 24eqtr4d 2473 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )  =  .x.  )
2625opeq2d 4061 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>.  =  <. (comp `  ndx ) ,  .x.  >. )
2713, 19, 26tpeq123d 3964 . . . 4  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  Func  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. }  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
286, 11, 27csbied2 3310 . . 3  |-  ( (
ph  /\  u  =  U )  ->  [_ (
u  i^i  Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. }  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
29 catcval.u . . . 4  |-  ( ph  ->  U  e.  V )
30 elex 2976 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
3129, 30syl 16 . . 3  |-  ( ph  ->  U  e.  _V )
32 tpex 6374 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
3332a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
343, 28, 31, 33fvmptd 5774 . 2  |-  ( ph  ->  (CatCat `  U )  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
351, 34syl5eq 2482 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2967   [_csb 3283    i^i cin 3322   {ctp 3876   <.cop 3878    e. cmpt 4345    X. cxp 4833   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   2ndc2nd 6571   ndxcnx 14163   Basecbs 14166   Hom chom 14241  compcco 14242   Catccat 14594    Func cfunc 14756    o.func ccofu 14758  CatCatccatc 14954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-iota 5376  df-fun 5415  df-fv 5421  df-oprab 6090  df-mpt2 6091  df-catc 14955
This theorem is referenced by:  catcbas  14957  catchomfval  14958  catccofval  14960
  Copyright terms: Public domain W3C validator