MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcocl Structured version   Unicode version

Theorem catcocl 14936
Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b  |-  B  =  ( Base `  C
)
catcocl.h  |-  H  =  ( Hom  `  C
)
catcocl.o  |-  .x.  =  (comp `  C )
catcocl.c  |-  ( ph  ->  C  e.  Cat )
catcocl.x  |-  ( ph  ->  X  e.  B )
catcocl.y  |-  ( ph  ->  Y  e.  B )
catcocl.z  |-  ( ph  ->  Z  e.  B )
catcocl.f  |-  ( ph  ->  F  e.  ( X H Y ) )
catcocl.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
Assertion
Ref Expression
catcocl  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )

Proof of Theorem catcocl
Dummy variables  f 
g  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3  |-  ( ph  ->  C  e.  Cat )
2 catcocl.b . . . . 5  |-  B  =  ( Base `  C
)
3 catcocl.h . . . . 5  |-  H  =  ( Hom  `  C
)
4 catcocl.o . . . . 5  |-  .x.  =  (comp `  C )
52, 3, 4iscat 14923 . . . 4  |-  ( C  e.  Cat  ->  ( C  e.  Cat  <->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) ) )
65ibi 241 . . 3  |-  ( C  e.  Cat  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
7 simpl 457 . . . . . . . . 9  |-  ( ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( g
( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z ) )
87ralimi 2857 . . . . . . . 8  |-  ( A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
98ralimi 2857 . . . . . . 7  |-  ( A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
109ralimi 2857 . . . . . 6  |-  ( A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1110ralimi 2857 . . . . 5  |-  ( A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1211adantl 466 . . . 4  |-  ( ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1312ralimi 2857 . . 3  |-  ( A. x  e.  B  ( E. g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
141, 6, 133syl 20 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
15 catcocl.x . . 3  |-  ( ph  ->  X  e.  B )
16 catcocl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
1716adantr 465 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
18 catcocl.z . . . . . 6  |-  ( ph  ->  Z  e.  B )
1918ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  B )
20 catcocl.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( X H Y ) )
2120ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X H Y ) )
22 simpllr 758 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
23 simplr 754 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
2422, 23oveq12d 6300 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x H y )  =  ( X H Y ) )
2521, 24eleqtrrd 2558 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x H y ) )
26 catcocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y H Z ) )
2726ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( Y H Z ) )
28 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  z  =  Z )
2923, 28oveq12d 6300 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
y H z )  =  ( Y H Z ) )
3027, 29eleqtrrd 2558 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( y H z ) )
3130adantr 465 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y H z ) )
32 simp-5r 768 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  x  =  X )
33 simp-4r 766 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  y  =  Y )
3432, 33opeq12d 4221 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  <. x ,  y >.  =  <. X ,  Y >. )
35 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  z  =  Z )
3634, 35oveq12d 6300 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
37 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  g  =  G )
38 simplr 754 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  f  =  F )
3936, 37, 38oveq123d 6303 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
4032, 35oveq12d 6300 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
x H z )  =  ( X H Z ) )
4139, 40eleq12d 2549 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  <->  ( G
( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4231, 41rspcdv 3217 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4325, 42rspcimdv 3215 . . . . 5  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4419, 43rspcimdv 3215 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4517, 44rspcimdv 3215 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4615, 45rspcimdv 3215 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4714, 46mpd 15 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   <.cop 4033   ` cfv 5586  (class class class)co 6282   Basecbs 14486   Hom chom 14562  compcco 14563   Catccat 14915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5549  df-fv 5594  df-ov 6285  df-cat 14919
This theorem is referenced by:  oppccatid  14971  ismon2  14986  isepi2  14993  sectco  15008  monsect  15030  issubc3  15072  fullsubc  15073  idfucl  15104  cofucl  15111  fthsect  15148  fthmon  15150  fuccocl  15187  invfuc  15197  coahom  15251  catcisolem  15287  xpccatid  15311  1stfcl  15320  2ndfcl  15321  prfcl  15326  evlfcllem  15344  evlfcl  15345  curf1cl  15351  curfcl  15355  hofcllem  15381  hofcl  15382  yon12  15388  hofpropd  15390  yonedalem4c  15400
  Copyright terms: Public domain W3C validator