MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcocl Structured version   Unicode version

Theorem catcocl 15533
Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b  |-  B  =  ( Base `  C
)
catcocl.h  |-  H  =  ( Hom  `  C
)
catcocl.o  |-  .x.  =  (comp `  C )
catcocl.c  |-  ( ph  ->  C  e.  Cat )
catcocl.x  |-  ( ph  ->  X  e.  B )
catcocl.y  |-  ( ph  ->  Y  e.  B )
catcocl.z  |-  ( ph  ->  Z  e.  B )
catcocl.f  |-  ( ph  ->  F  e.  ( X H Y ) )
catcocl.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
Assertion
Ref Expression
catcocl  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )

Proof of Theorem catcocl
Dummy variables  f 
g  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3  |-  ( ph  ->  C  e.  Cat )
2 catcocl.b . . . . 5  |-  B  =  ( Base `  C
)
3 catcocl.h . . . . 5  |-  H  =  ( Hom  `  C
)
4 catcocl.o . . . . 5  |-  .x.  =  (comp `  C )
52, 3, 4iscat 15520 . . . 4  |-  ( C  e.  Cat  ->  ( C  e.  Cat  <->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) ) )
65ibi 244 . . 3  |-  ( C  e.  Cat  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
7 simpl 458 . . . . . . . . 9  |-  ( ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( g
( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z ) )
87ralimi 2825 . . . . . . . 8  |-  ( A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
98ralimi 2825 . . . . . . 7  |-  ( A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
109ralimi 2825 . . . . . 6  |-  ( A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1110ralimi 2825 . . . . 5  |-  ( A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1211adantl 467 . . . 4  |-  ( ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1312ralimi 2825 . . 3  |-  ( A. x  e.  B  ( E. g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
141, 6, 133syl 18 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
15 catcocl.x . . 3  |-  ( ph  ->  X  e.  B )
16 catcocl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
1716adantr 466 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
18 catcocl.z . . . . . 6  |-  ( ph  ->  Z  e.  B )
1918ad2antrr 730 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  B )
20 catcocl.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( X H Y ) )
2120ad3antrrr 734 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X H Y ) )
22 simpllr 767 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
23 simplr 760 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
2422, 23oveq12d 6323 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x H y )  =  ( X H Y ) )
2521, 24eleqtrrd 2520 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x H y ) )
26 catcocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y H Z ) )
2726ad3antrrr 734 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( Y H Z ) )
28 simpr 462 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  z  =  Z )
2923, 28oveq12d 6323 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
y H z )  =  ( Y H Z ) )
3027, 29eleqtrrd 2520 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( y H z ) )
3130adantr 466 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y H z ) )
32 simp-5r 777 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  x  =  X )
33 simp-4r 775 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  y  =  Y )
3432, 33opeq12d 4198 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  <. x ,  y >.  =  <. X ,  Y >. )
35 simpllr 767 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  z  =  Z )
3634, 35oveq12d 6323 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
37 simpr 462 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  g  =  G )
38 simplr 760 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  f  =  F )
3936, 37, 38oveq123d 6326 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
4032, 35oveq12d 6323 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
x H z )  =  ( X H Z ) )
4139, 40eleq12d 2511 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  <->  ( G
( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4231, 41rspcdv 3191 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4325, 42rspcimdv 3189 . . . . 5  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4419, 43rspcimdv 3189 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4517, 44rspcimdv 3189 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4615, 45rspcimdv 3189 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4714, 46mpd 15 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783   <.cop 4008   ` cfv 5601  (class class class)co 6305   Basecbs 15075   Hom chom 15154  compcco 15155   Catccat 15512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-nul 4556
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-iota 5565  df-fv 5609  df-ov 6308  df-cat 15516
This theorem is referenced by:  oppccatid  15566  ismon2  15581  isepi2  15588  sectco  15603  monsect  15630  catsubcat  15686  issubc3  15696  fullsubc  15697  idfucl  15728  cofucl  15735  fthsect  15772  fthmon  15774  fuccocl  15811  invfuc  15821  2initoinv  15847  initoeu2lem0  15850  initoeu2lem1  15851  initoeu2  15853  2termoinv  15854  coahom  15907  catcisolem  15943  xpccatid  16015  1stfcl  16024  2ndfcl  16025  prfcl  16030  evlfcllem  16048  evlfcl  16049  curf1cl  16055  curfcl  16059  hofcllem  16085  hofcl  16086  yon12  16092  hofpropd  16094  yonedalem4c  16104  srhmsubc  38826  srhmsubcALTV  38845
  Copyright terms: Public domain W3C validator