MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcisolem Unicode version

Theorem catcisolem 14216
Description: Lemma for catciso 14217. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c  |-  C  =  (CatCat `  U )
catciso.b  |-  B  =  ( Base `  C
)
catciso.r  |-  R  =  ( Base `  X
)
catciso.s  |-  S  =  ( Base `  Y
)
catciso.u  |-  ( ph  ->  U  e.  V )
catciso.x  |-  ( ph  ->  X  e.  B )
catciso.y  |-  ( ph  ->  Y  e.  B )
catcisolem.i  |-  I  =  (Inv `  C )
catcisolem.g  |-  H  =  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' F `  x ) G ( `' F `  y ) ) )
catcisolem.1  |-  ( ph  ->  F ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) G )
catcisolem.2  |-  ( ph  ->  F : R -1-1-onto-> S )
Assertion
Ref Expression
catcisolem  |-  ( ph  -> 
<. F ,  G >. ( X I Y )
<. `' F ,  H >. )
Distinct variable groups:    x, y, C    x, F, y    x, G, y    ph, x, y   
x, I, y    x, R, y    x, S, y   
x, X, y    x, Y, y
Allowed substitution hints:    B( x, y)    U( x, y)    H( x, y)    V( x, y)

Proof of Theorem catcisolem
Dummy variables  f 
g  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcisolem.2 . . . . . . 7  |-  ( ph  ->  F : R -1-1-onto-> S )
2 f1ococnv1 5663 . . . . . . 7  |-  ( F : R -1-1-onto-> S  ->  ( `' F  o.  F )  =  (  _I  |`  R ) )
31, 2syl 16 . . . . . 6  |-  ( ph  ->  ( `' F  o.  F )  =  (  _I  |`  R )
)
413ad2ant1 978 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  F : R
-1-1-onto-> S )
5 f1of 5633 . . . . . . . . . . . . . 14  |-  ( F : R -1-1-onto-> S  ->  F : R
--> S )
64, 5syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  F : R
--> S )
7 simp2 958 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  u  e.  R )
86, 7ffvelrnd 5830 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( F `  u )  e.  S
)
9 simp3 959 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  v  e.  R )
106, 9ffvelrnd 5830 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( F `  v )  e.  S
)
11 simpl 444 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( F `
 u )  /\  y  =  ( F `  v ) )  ->  x  =  ( F `  u ) )
1211fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( F `
 u )  /\  y  =  ( F `  v ) )  -> 
( `' F `  x )  =  ( `' F `  ( F `
 u ) ) )
13 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  ( F `
 u )  /\  y  =  ( F `  v ) )  -> 
y  =  ( F `
 v ) )
1413fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( F `
 u )  /\  y  =  ( F `  v ) )  -> 
( `' F `  y )  =  ( `' F `  ( F `
 v ) ) )
1512, 14oveq12d 6058 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( F `
 u )  /\  y  =  ( F `  v ) )  -> 
( ( `' F `  x ) G ( `' F `  y ) )  =  ( ( `' F `  ( F `
 u ) ) G ( `' F `  ( F `  v
) ) ) )
1615cnveqd 5007 . . . . . . . . . . . . 13  |-  ( ( x  =  ( F `
 u )  /\  y  =  ( F `  v ) )  ->  `' ( ( `' F `  x ) G ( `' F `  y ) )  =  `' ( ( `' F `  ( F `
 u ) ) G ( `' F `  ( F `  v
) ) ) )
17 catcisolem.g . . . . . . . . . . . . 13  |-  H  =  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' F `  x ) G ( `' F `  y ) ) )
18 ovex 6065 . . . . . . . . . . . . . 14  |-  ( ( `' F `  ( F `
 u ) ) G ( `' F `  ( F `  v
) ) )  e. 
_V
1918cnvex 5365 . . . . . . . . . . . . 13  |-  `' ( ( `' F `  ( F `  u ) ) G ( `' F `  ( F `
 v ) ) )  e.  _V
2016, 17, 19ovmpt2a 6163 . . . . . . . . . . . 12  |-  ( ( ( F `  u
)  e.  S  /\  ( F `  v )  e.  S )  -> 
( ( F `  u ) H ( F `  v ) )  =  `' ( ( `' F `  ( F `  u ) ) G ( `' F `  ( F `
 v ) ) ) )
218, 10, 20syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( ( F `  u ) H ( F `  v ) )  =  `' ( ( `' F `  ( F `
 u ) ) G ( `' F `  ( F `  v
) ) ) )
22 f1ocnvfv1 5973 . . . . . . . . . . . . . 14  |-  ( ( F : R -1-1-onto-> S  /\  u  e.  R )  ->  ( `' F `  ( F `  u ) )  =  u )
234, 7, 22syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( `' F `  ( F `  u ) )  =  u )
24 f1ocnvfv1 5973 . . . . . . . . . . . . . 14  |-  ( ( F : R -1-1-onto-> S  /\  v  e.  R )  ->  ( `' F `  ( F `  v ) )  =  v )
254, 9, 24syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( `' F `  ( F `  v ) )  =  v )
2623, 25oveq12d 6058 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( ( `' F `  ( F `
 u ) ) G ( `' F `  ( F `  v
) ) )  =  ( u G v ) )
2726cnveqd 5007 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  `' (
( `' F `  ( F `  u ) ) G ( `' F `  ( F `
 v ) ) )  =  `' ( u G v ) )
2821, 27eqtrd 2436 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( ( F `  u ) H ( F `  v ) )  =  `' ( u G v ) )
2928coeq1d 4993 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( (
( F `  u
) H ( F `
 v ) )  o.  ( u G v ) )  =  ( `' ( u G v )  o.  ( u G v ) ) )
30 catciso.r . . . . . . . . . . 11  |-  R  =  ( Base `  X
)
31 eqid 2404 . . . . . . . . . . 11  |-  (  Hom  `  X )  =  (  Hom  `  X )
32 eqid 2404 . . . . . . . . . . 11  |-  (  Hom  `  Y )  =  (  Hom  `  Y )
33 catcisolem.1 . . . . . . . . . . . 12  |-  ( ph  ->  F ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) G )
34333ad2ant1 978 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  F (
( X Full  Y )  i^i  ( X Faith  Y ) ) G )
3530, 31, 32, 34, 7, 9ffthf1o 14071 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( u G v ) : ( u (  Hom  `  X ) v ) -1-1-onto-> ( ( F `  u
) (  Hom  `  Y
) ( F `  v ) ) )
36 f1ococnv1 5663 . . . . . . . . . 10  |-  ( ( u G v ) : ( u (  Hom  `  X )
v ) -1-1-onto-> ( ( F `  u ) (  Hom  `  Y ) ( F `
 v ) )  ->  ( `' ( u G v )  o.  ( u G v ) )  =  (  _I  |`  (
u (  Hom  `  X
) v ) ) )
3735, 36syl 16 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( `' ( u G v )  o.  ( u G v ) )  =  (  _I  |`  (
u (  Hom  `  X
) v ) ) )
3829, 37eqtrd 2436 . . . . . . . 8  |-  ( (
ph  /\  u  e.  R  /\  v  e.  R
)  ->  ( (
( F `  u
) H ( F `
 v ) )  o.  ( u G v ) )  =  (  _I  |`  (
u (  Hom  `  X
) v ) ) )
3938mpt2eq3dva 6097 . . . . . . 7  |-  ( ph  ->  ( u  e.  R ,  v  e.  R  |->  ( ( ( F `
 u ) H ( F `  v
) )  o.  (
u G v ) ) )  =  ( u  e.  R , 
v  e.  R  |->  (  _I  |`  ( u
(  Hom  `  X ) v ) ) ) )
40 fveq2 5687 . . . . . . . . . 10  |-  ( z  =  <. u ,  v
>.  ->  ( (  Hom  `  X ) `  z
)  =  ( (  Hom  `  X ) `  <. u ,  v
>. ) )
41 df-ov 6043 . . . . . . . . . 10  |-  ( u (  Hom  `  X
) v )  =  ( (  Hom  `  X
) `  <. u ,  v >. )
4240, 41syl6eqr 2454 . . . . . . . . 9  |-  ( z  =  <. u ,  v
>.  ->  ( (  Hom  `  X ) `  z
)  =  ( u (  Hom  `  X
) v ) )
4342reseq2d 5105 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  (  _I  |`  (
(  Hom  `  X ) `
 z ) )  =  (  _I  |`  (
u (  Hom  `  X
) v ) ) )
4443mpt2mpt 6124 . . . . . . 7  |-  ( z  e.  ( R  X.  R )  |->  (  _I  |`  ( (  Hom  `  X
) `  z )
) )  =  ( u  e.  R , 
v  e.  R  |->  (  _I  |`  ( u
(  Hom  `  X ) v ) ) )
4539, 44syl6eqr 2454 . . . . . 6  |-  ( ph  ->  ( u  e.  R ,  v  e.  R  |->  ( ( ( F `
 u ) H ( F `  v
) )  o.  (
u G v ) ) )  =  ( z  e.  ( R  X.  R )  |->  (  _I  |`  ( (  Hom  `  X ) `  z ) ) ) )
463, 45opeq12d 3952 . . . . 5  |-  ( ph  -> 
<. ( `' F  o.  F ) ,  ( u  e.  R , 
v  e.  R  |->  ( ( ( F `  u ) H ( F `  v ) )  o.  ( u G v ) ) ) >.  =  <. (  _I  |`  R ) ,  ( z  e.  ( R  X.  R
)  |->  (  _I  |`  (
(  Hom  `  X ) `
 z ) ) ) >. )
47 inss1 3521 . . . . . . . . 9  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X Full  Y )
48 fullfunc 14058 . . . . . . . . 9  |-  ( X Full 
Y )  C_  ( X  Func  Y )
4947, 48sstri 3317 . . . . . . . 8  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X  Func  Y )
5049ssbri 4214 . . . . . . 7  |-  ( F ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) G  ->  F ( X  Func  Y ) G )
5133, 50syl 16 . . . . . 6  |-  ( ph  ->  F ( X  Func  Y ) G )
52 catciso.s . . . . . . 7  |-  S  =  ( Base `  Y
)
53 eqid 2404 . . . . . . 7  |-  ( Id
`  Y )  =  ( Id `  Y
)
54 eqid 2404 . . . . . . 7  |-  ( Id
`  X )  =  ( Id `  X
)
55 eqid 2404 . . . . . . 7  |-  (comp `  Y )  =  (comp `  Y )
56 eqid 2404 . . . . . . 7  |-  (comp `  X )  =  (comp `  X )
57 catciso.c . . . . . . . . . 10  |-  C  =  (CatCat `  U )
58 catciso.b . . . . . . . . . 10  |-  B  =  ( Base `  C
)
59 catciso.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  V )
6057, 58, 59catcbas 14207 . . . . . . . . 9  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
61 inss2 3522 . . . . . . . . 9  |-  ( U  i^i  Cat )  C_  Cat
6260, 61syl6eqss 3358 . . . . . . . 8  |-  ( ph  ->  B  C_  Cat )
63 catciso.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
6462, 63sseldd 3309 . . . . . . 7  |-  ( ph  ->  Y  e.  Cat )
65 catciso.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
6662, 65sseldd 3309 . . . . . . 7  |-  ( ph  ->  X  e.  Cat )
67 f1ocnv 5646 . . . . . . . 8  |-  ( F : R -1-1-onto-> S  ->  `' F : S -1-1-onto-> R )
68 f1of 5633 . . . . . . . 8  |-  ( `' F : S -1-1-onto-> R  ->  `' F : S --> R )
691, 67, 683syl 19 . . . . . . 7  |-  ( ph  ->  `' F : S --> R )
70 ovex 6065 . . . . . . . . . 10  |-  ( ( `' F `  x ) G ( `' F `  y ) )  e. 
_V
7170cnvex 5365 . . . . . . . . 9  |-  `' ( ( `' F `  x ) G ( `' F `  y ) )  e.  _V
7217, 71fnmpt2i 6379 . . . . . . . 8  |-  H  Fn  ( S  X.  S
)
7372a1i 11 . . . . . . 7  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
7433adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  ->  F ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) G )
7569ffvelrnda 5829 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  ( `' F `  u )  e.  R )
7675adantrr 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( `' F `  u )  e.  R
)
7769ffvelrnda 5829 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  S )  ->  ( `' F `  v )  e.  R )
7877adantrl 697 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( `' F `  v )  e.  R
)
7930, 31, 32, 74, 76, 78ffthf1o 14071 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) )
80 f1ocnv 5646 . . . . . . . . 9  |-  ( ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  ->  `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) -1-1-onto-> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) )
81 f1of 5633 . . . . . . . . 9  |-  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) -1-1-onto-> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) )  ->  `' (
( `' F `  u ) G ( `' F `  v ) ) : ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) --> ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) )
8279, 80, 813syl 19 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  ->  `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) --> ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) )
83 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( x  =  u  /\  y  =  v )  ->  x  =  u )
8483fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  v )  ->  ( `' F `  x )  =  ( `' F `  u ) )
85 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( x  =  u  /\  y  =  v )  ->  y  =  v )
8685fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  v )  ->  ( `' F `  y )  =  ( `' F `  v ) )
8784, 86oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ( `' F `  x ) G ( `' F `  y ) )  =  ( ( `' F `  u ) G ( `' F `  v ) ) )
8887cnveqd 5007 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  `' ( ( `' F `  x ) G ( `' F `  y ) )  =  `' ( ( `' F `  u ) G ( `' F `  v ) ) )
89 ovex 6065 . . . . . . . . . . . 12  |-  ( ( `' F `  u ) G ( `' F `  v ) )  e. 
_V
9089cnvex 5365 . . . . . . . . . . 11  |-  `' ( ( `' F `  u ) G ( `' F `  v ) )  e.  _V
9188, 17, 90ovmpt2a 6163 . . . . . . . . . 10  |-  ( ( u  e.  S  /\  v  e.  S )  ->  ( u H v )  =  `' ( ( `' F `  u ) G ( `' F `  v ) ) )
9291adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( u H v )  =  `' ( ( `' F `  u ) G ( `' F `  v ) ) )
931adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  ->  F : R -1-1-onto-> S )
94 simprl 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  ->  u  e.  S )
95 f1ocnvfv2 5974 . . . . . . . . . . . 12  |-  ( ( F : R -1-1-onto-> S  /\  u  e.  S )  ->  ( F `  ( `' F `  u ) )  =  u )
9693, 94, 95syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( F `  ( `' F `  u ) )  =  u )
97 simprr 734 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
v  e.  S )
98 f1ocnvfv2 5974 . . . . . . . . . . . 12  |-  ( ( F : R -1-1-onto-> S  /\  v  e.  S )  ->  ( F `  ( `' F `  v ) )  =  v )
9993, 97, 98syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( F `  ( `' F `  v ) )  =  v )
10096, 99oveq12d 6058 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  =  ( u (  Hom  `  Y
) v ) )
101100eqcomd 2409 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( u (  Hom  `  Y ) v )  =  ( ( F `
 ( `' F `  u ) ) (  Hom  `  Y )
( F `  ( `' F `  v ) ) ) )
10292, 101feq12d 5541 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( ( u H v ) : ( u (  Hom  `  Y
) v ) --> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) )  <->  `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) --> ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) ) )
10382, 102mpbird 224 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S ) )  -> 
( u H v ) : ( u (  Hom  `  Y
) v ) --> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) )
104 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S )  ->  u  e.  S )
105 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( x  =  u  /\  y  =  u )  ->  x  =  u )
106105fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  u )  ->  ( `' F `  x )  =  ( `' F `  u ) )
107 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( x  =  u  /\  y  =  u )  ->  y  =  u )
108107fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  u )  ->  ( `' F `  y )  =  ( `' F `  u ) )
109106, 108oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  u )  ->  ( ( `' F `  x ) G ( `' F `  y ) )  =  ( ( `' F `  u ) G ( `' F `  u ) ) )
110109cnveqd 5007 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  u )  ->  `' ( ( `' F `  x ) G ( `' F `  y ) )  =  `' ( ( `' F `  u ) G ( `' F `  u ) ) )
111 ovex 6065 . . . . . . . . . . . 12  |-  ( ( `' F `  u ) G ( `' F `  u ) )  e. 
_V
112111cnvex 5365 . . . . . . . . . . 11  |-  `' ( ( `' F `  u ) G ( `' F `  u ) )  e.  _V
113110, 17, 112ovmpt2a 6163 . . . . . . . . . 10  |-  ( ( u  e.  S  /\  u  e.  S )  ->  ( u H u )  =  `' ( ( `' F `  u ) G ( `' F `  u ) ) )
114104, 104, 113syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  S )  ->  (
u H u )  =  `' ( ( `' F `  u ) G ( `' F `  u ) ) )
115114fveq1d 5689 . . . . . . . 8  |-  ( (
ph  /\  u  e.  S )  ->  (
( u H u ) `  ( ( Id `  Y ) `
 u ) )  =  ( `' ( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  Y ) `
 u ) ) )
11651adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  F
( X  Func  Y
) G )
11730, 54, 53, 116, 75funcid 14022 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S )  ->  (
( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  X ) `
 ( `' F `  u ) ) )  =  ( ( Id
`  Y ) `  ( F `  ( `' F `  u ) ) ) )
1181, 95sylan 458 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  ( F `  ( `' F `  u )
)  =  u )
119118fveq2d 5691 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S )  ->  (
( Id `  Y
) `  ( F `  ( `' F `  u ) ) )  =  ( ( Id
`  Y ) `  u ) )
120117, 119eqtrd 2436 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  S )  ->  (
( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  X ) `
 ( `' F `  u ) ) )  =  ( ( Id
`  Y ) `  u ) )
12133adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  F
( ( X Full  Y
)  i^i  ( X Faith  Y ) ) G )
12230, 31, 32, 121, 75, 75ffthf1o 14071 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S )  ->  (
( `' F `  u ) G ( `' F `  u ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  u ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  u ) ) ) )
12366adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  X  e.  Cat )
12430, 31, 54, 123, 75catidcl 13862 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S )  ->  (
( Id `  X
) `  ( `' F `  u )
)  e.  ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  u ) ) )
125 f1ocnvfv 5975 . . . . . . . . . 10  |-  ( ( ( ( `' F `  u ) G ( `' F `  u ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  u ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  u ) ) )  /\  (
( Id `  X
) `  ( `' F `  u )
)  e.  ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  u ) ) )  ->  ( ( ( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  X ) `
 ( `' F `  u ) ) )  =  ( ( Id
`  Y ) `  u )  ->  ( `' ( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  Y ) `  u
) )  =  ( ( Id `  X
) `  ( `' F `  u )
) ) )
126122, 124, 125syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  S )  ->  (
( ( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  X ) `  ( `' F `  u ) ) )  =  ( ( Id `  Y
) `  u )  ->  ( `' ( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  Y ) `  u
) )  =  ( ( Id `  X
) `  ( `' F `  u )
) ) )
127120, 126mpd 15 . . . . . . . 8  |-  ( (
ph  /\  u  e.  S )  ->  ( `' ( ( `' F `  u ) G ( `' F `  u ) ) `  ( ( Id `  Y ) `  u
) )  =  ( ( Id `  X
) `  ( `' F `  u )
) )
128115, 127eqtrd 2436 . . . . . . 7  |-  ( (
ph  /\  u  e.  S )  ->  (
( u H u ) `  ( ( Id `  Y ) `
 u ) )  =  ( ( Id
`  X ) `  ( `' F `  u ) ) )
129513ad2ant1 978 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  F ( X 
Func  Y ) G )
130693ad2ant1 978 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  `' F : S
--> R )
131 simp21 990 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  u  e.  S
)
132130, 131ffvelrnd 5830 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( `' F `  u )  e.  R
)
133 simp22 991 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  v  e.  S
)
134130, 133ffvelrnd 5830 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( `' F `  v )  e.  R
)
135 simp23 992 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  z  e.  S
)
136130, 135ffvelrnd 5830 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( `' F `  z )  e.  R
)
137333ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  F ( ( X Full  Y )  i^i  ( X Faith  Y ) ) G )
13830, 31, 32, 137, 132, 134ffthf1o 14071 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) )
13913ad2ant1 978 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  F : R -1-1-onto-> S
)
140139, 131, 95syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( F `  ( `' F `  u ) )  =  u )
141139, 133, 98syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( F `  ( `' F `  v ) )  =  v )
142140, 141oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( F `
 ( `' F `  u ) ) (  Hom  `  Y )
( F `  ( `' F `  v ) ) )  =  ( u (  Hom  `  Y
) v ) )
143 f1oeq3 5626 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  =  ( u (  Hom  `  Y
) v )  -> 
( ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  <->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y ) v ) ) )
144142, 143syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  <->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y ) v ) ) )
145138, 144mpbid 202 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y ) v ) )
146 f1ocnv 5646 . . . . . . . . . . . . 13  |-  ( ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y
) v )  ->  `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( u (  Hom  `  Y ) v ) -1-1-onto-> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) )
147 f1of 5633 . . . . . . . . . . . . 13  |-  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( u (  Hom  `  Y
) v ) -1-1-onto-> ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) )  ->  `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( u (  Hom  `  Y ) v ) --> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) )
148145, 146, 1473syl 19 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  `' ( ( `' F `  u ) G ( `' F `  v ) ) : ( u (  Hom  `  Y ) v ) --> ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) )
149 simp3l 985 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  f  e.  ( u (  Hom  `  Y
) v ) )
150148, 149ffvelrnd 5830 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f )  e.  ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) )
15130, 31, 32, 137, 134, 136ffthf1o 14071 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( ( F `  ( `' F `  v ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) ) )
152 f1ocnvfv2 5974 . . . . . . . . . . . . . . . . 17  |-  ( ( F : R -1-1-onto-> S  /\  z  e.  S )  ->  ( F `  ( `' F `  z ) )  =  z )
153139, 135, 152syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( F `  ( `' F `  z ) )  =  z )
154141, 153oveq12d 6058 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( F `
 ( `' F `  v ) ) (  Hom  `  Y )
( F `  ( `' F `  z ) ) )  =  ( v (  Hom  `  Y
) z ) )
155 f1oeq3 5626 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  ( `' F `  v ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) )  =  ( v (  Hom  `  Y
) z )  -> 
( ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( ( F `  ( `' F `  v ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) )  <->  ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( v (  Hom  `  Y ) z ) ) )
156154, 155syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( ( F `  ( `' F `  v ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) )  <->  ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( v (  Hom  `  Y ) z ) ) )
157151, 156mpbid 202 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( v (  Hom  `  Y ) z ) )
158 f1ocnv 5646 . . . . . . . . . . . . 13  |-  ( ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X
) ( `' F `  z ) ) -1-1-onto-> ( v (  Hom  `  Y
) z )  ->  `' ( ( `' F `  v ) G ( `' F `  z ) ) : ( v (  Hom  `  Y ) z ) -1-1-onto-> ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) )
159 f1of 5633 . . . . . . . . . . . . 13  |-  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) : ( v (  Hom  `  Y
) z ) -1-1-onto-> ( ( `' F `  v ) (  Hom  `  X
) ( `' F `  z ) )  ->  `' ( ( `' F `  v ) G ( `' F `  z ) ) : ( v (  Hom  `  Y ) z ) --> ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) )
160157, 158, 1593syl 19 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  `' ( ( `' F `  v ) G ( `' F `  z ) ) : ( v (  Hom  `  Y ) z ) --> ( ( `' F `  v ) (  Hom  `  X ) ( `' F `  z ) ) )
161 simp3r 986 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  g  e.  ( v (  Hom  `  Y
) z ) )
162160, 161ffvelrnd 5830 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g )  e.  ( ( `' F `  v ) (  Hom  `  X
) ( `' F `  z ) ) )
16330, 31, 56, 55, 129, 132, 134, 136, 150, 162funcco 14023 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  u ) G ( `' F `  z ) ) `  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )  =  ( ( ( ( `' F `  v ) G ( `' F `  z ) ) `  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ) ( <. ( F `  ( `' F `  u )
) ,  ( F `
 ( `' F `  v ) ) >.
(comp `  Y )
( F `  ( `' F `  z ) ) ) ( ( ( `' F `  u ) G ( `' F `  v ) ) `  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) ) )
164140, 141opeq12d 3952 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  <. ( F `  ( `' F `  u ) ) ,  ( F `
 ( `' F `  v ) ) >.  =  <. u ,  v
>. )
165164, 153oveq12d 6058 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( <. ( F `  ( `' F `  u )
) ,  ( F `
 ( `' F `  v ) ) >.
(comp `  Y )
( F `  ( `' F `  z ) ) )  =  (
<. u ,  v >.
(comp `  Y )
z ) )
166 f1ocnvfv2 5974 . . . . . . . . . . . 12  |-  ( ( ( ( `' F `  v ) G ( `' F `  z ) ) : ( ( `' F `  v ) (  Hom  `  X
) ( `' F `  z ) ) -1-1-onto-> ( v (  Hom  `  Y
) z )  /\  g  e.  ( v
(  Hom  `  Y ) z ) )  -> 
( ( ( `' F `  v ) G ( `' F `  z ) ) `  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) )  =  g )
167157, 161, 166syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  v ) G ( `' F `  z ) ) `  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) )  =  g )
168 f1ocnvfv2 5974 . . . . . . . . . . . 12  |-  ( ( ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y
) v )  /\  f  e.  ( u
(  Hom  `  Y ) v ) )  -> 
( ( ( `' F `  u ) G ( `' F `  v ) ) `  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) )  =  f )
169145, 149, 168syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  u ) G ( `' F `  v ) ) `  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) )  =  f )
170165, 167, 169oveq123d 6061 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( ( `' F `  v ) G ( `' F `  z ) ) `  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ) ( <. ( F `  ( `' F `  u )
) ,  ( F `
 ( `' F `  v ) ) >.
(comp `  Y )
( F `  ( `' F `  z ) ) ) ( ( ( `' F `  u ) G ( `' F `  v ) ) `  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )  =  ( g ( <. u ,  v >. (comp `  Y ) z ) f ) )
171163, 170eqtrd 2436 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  u ) G ( `' F `  z ) ) `  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )  =  ( g (
<. u ,  v >.
(comp `  Y )
z ) f ) )
17230, 31, 32, 137, 132, 136ffthf1o 14071 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) ) )
173140, 153oveq12d 6058 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( F `
 ( `' F `  u ) ) (  Hom  `  Y )
( F `  ( `' F `  z ) ) )  =  ( u (  Hom  `  Y
) z ) )
174 f1oeq3 5626 . . . . . . . . . . . 12  |-  ( ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) )  =  ( u (  Hom  `  Y
) z )  -> 
( ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) )  <->  ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( u (  Hom  `  Y ) z ) ) )
175173, 174syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  z ) ) )  <->  ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( u (  Hom  `  Y ) z ) ) )
176172, 175mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) -1-1-onto-> ( u (  Hom  `  Y ) z ) )
177663ad2ant1 978 . . . . . . . . . . 11  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  X  e.  Cat )
17830, 31, 56, 177, 132, 134, 136, 150, 162catcocl 13865 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) )  e.  ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) )
179 f1ocnvfv 5975 . . . . . . . . . 10  |-  ( ( ( ( `' F `  u ) G ( `' F `  z ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  z ) ) -1-1-onto-> ( u (  Hom  `  Y
) z )  /\  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) )  e.  ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  z ) ) )  ->  (
( ( ( `' F `  u ) G ( `' F `  z ) ) `  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )  =  ( g (
<. u ,  v >.
(comp `  Y )
z ) f )  ->  ( `' ( ( `' F `  u ) G ( `' F `  z ) ) `  ( g ( <. u ,  v
>. (comp `  Y )
z ) f ) )  =  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <.
( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) ) )
180176, 178, 179syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( ( `' F `  u ) G ( `' F `  z ) ) `  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <.
( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )  =  ( g (
<. u ,  v >.
(comp `  Y )
z ) f )  ->  ( `' ( ( `' F `  u ) G ( `' F `  z ) ) `  ( g ( <. u ,  v
>. (comp `  Y )
z ) f ) )  =  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <.
( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) ) )
181171, 180mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( `' ( ( `' F `  u ) G ( `' F `  z ) ) `  ( g ( <. u ,  v
>. (comp `  Y )
z ) f ) )  =  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <.
( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )
182 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( x  =  u  /\  y  =  z )  ->  x  =  u )
183182fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  z )  ->  ( `' F `  x )  =  ( `' F `  u ) )
184 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( x  =  u  /\  y  =  z )  ->  y  =  z )
185184fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  =  u  /\  y  =  z )  ->  ( `' F `  y )  =  ( `' F `  z ) )
186183, 185oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( x  =  u  /\  y  =  z )  ->  ( ( `' F `  x ) G ( `' F `  y ) )  =  ( ( `' F `  u ) G ( `' F `  z ) ) )
187186cnveqd 5007 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  z )  ->  `' ( ( `' F `  x ) G ( `' F `  y ) )  =  `' ( ( `' F `  u ) G ( `' F `  z ) ) )
188 ovex 6065 . . . . . . . . . . . 12  |-  ( ( `' F `  u ) G ( `' F `  z ) )  e. 
_V
189188cnvex 5365 . . . . . . . . . . 11  |-  `' ( ( `' F `  u ) G ( `' F `  z ) )  e.  _V
190187, 17, 189ovmpt2a 6163 . . . . . . . . . 10  |-  ( ( u  e.  S  /\  z  e.  S )  ->  ( u H z )  =  `' ( ( `' F `  u ) G ( `' F `  z ) ) )
191131, 135, 190syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( u H z )  =  `' ( ( `' F `  u ) G ( `' F `  z ) ) )
192191fveq1d 5689 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( u H z ) `  ( g ( <.
u ,  v >.
(comp `  Y )
z ) f ) )  =  ( `' ( ( `' F `  u ) G ( `' F `  z ) ) `  ( g ( <. u ,  v
>. (comp `  Y )
z ) f ) ) )
193 simpl 444 . . . . . . . . . . . . . . 15  |-  ( ( x  =  v  /\  y  =  z )  ->  x  =  v )
194193fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( ( x  =  v  /\  y  =  z )  ->  ( `' F `  x )  =  ( `' F `  v ) )
195 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( x  =  v  /\  y  =  z )  ->  y  =  z )
196195fveq2d 5691 . . . . . . . . . . . . . 14  |-  ( ( x  =  v  /\  y  =  z )  ->  ( `' F `  y )  =  ( `' F `  z ) )
197194, 196oveq12d 6058 . . . . . . . . . . . . 13  |-  ( ( x  =  v  /\  y  =  z )  ->  ( ( `' F `  x ) G ( `' F `  y ) )  =  ( ( `' F `  v ) G ( `' F `  z ) ) )
198197cnveqd 5007 . . . . . . . . . . . 12  |-  ( ( x  =  v  /\  y  =  z )  ->  `' ( ( `' F `  x ) G ( `' F `  y ) )  =  `' ( ( `' F `  v ) G ( `' F `  z ) ) )
199 ovex 6065 . . . . . . . . . . . . 13  |-  ( ( `' F `  v ) G ( `' F `  z ) )  e. 
_V
200199cnvex 5365 . . . . . . . . . . . 12  |-  `' ( ( `' F `  v ) G ( `' F `  z ) )  e.  _V
201198, 17, 200ovmpt2a 6163 . . . . . . . . . . 11  |-  ( ( v  e.  S  /\  z  e.  S )  ->  ( v H z )  =  `' ( ( `' F `  v ) G ( `' F `  z ) ) )
202133, 135, 201syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( v H z )  =  `' ( ( `' F `  v ) G ( `' F `  z ) ) )
203202fveq1d 5689 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( v H z ) `  g )  =  ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) )
204131, 133, 91syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( u H v )  =  `' ( ( `' F `  u ) G ( `' F `  v ) ) )
205204fveq1d 5689 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( u H v ) `  f )  =  ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) )
206203, 205oveq12d 6058 . . . . . . . 8  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( ( v H z ) `
 g ) (
<. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( ( u H v ) `  f ) )  =  ( ( `' ( ( `' F `  v ) G ( `' F `  z ) ) `  g ) ( <.
( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( `' ( ( `' F `  u ) G ( `' F `  v ) ) `  f ) ) )
207181, 192, 2063eqtr4d 2446 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  S  /\  v  e.  S  /\  z  e.  S )  /\  (
f  e.  ( u (  Hom  `  Y
) v )  /\  g  e.  ( v
(  Hom  `  Y ) z ) ) )  ->  ( ( u H z ) `  ( g ( <.
u ,  v >.
(comp `  Y )
z ) f ) )  =  ( ( ( v H z ) `  g ) ( <. ( `' F `  u ) ,  ( `' F `  v )
>. (comp `  X )
( `' F `  z ) ) ( ( u H v ) `  f ) ) )
20852, 30, 32, 31, 53, 54, 55, 56, 64, 66, 69, 73, 103, 128, 207isfuncd 14017 . . . . . 6  |-  ( ph  ->  `' F ( Y  Func  X ) H )
20930, 51, 208cofuval2 14039 . . . . 5  |-  ( ph  ->  ( <. `' F ,  H >.  o.func 
<. F ,  G >. )  =  <. ( `' F  o.  F ) ,  ( u  e.  R , 
v  e.  R  |->  ( ( ( F `  u ) H ( F `  v ) )  o.  ( u G v ) ) ) >. )
210 eqid 2404 . . . . . 6  |-  (idfunc `  X
)  =  (idfunc `  X
)
211210, 30, 66, 31idfuval 14028 . . . . 5  |-  ( ph  ->  (idfunc `  X )  =  <. (  _I  |`  R ) ,  ( z  e.  ( R  X.  R
)  |->  (  _I  |`  (
(  Hom  `  X ) `
 z ) ) ) >. )
21246, 209, 2113eqtr4d 2446 . . . 4  |-  ( ph  ->  ( <. `' F ,  H >.  o.func 
<. F ,  G >. )  =  (idfunc `  X ) )
213 eqid 2404 . . . . 5  |-  (comp `  C )  =  (comp `  C )
214 df-br 4173 . . . . . 6  |-  ( F ( X  Func  Y
) G  <->  <. F ,  G >.  e.  ( X 
Func  Y ) )
21551, 214sylib 189 . . . . 5  |-  ( ph  -> 
<. F ,  G >.  e.  ( X  Func  Y
) )
216 df-br 4173 . . . . . 6  |-  ( `' F ( Y  Func  X ) H  <->  <. `' F ,  H >.  e.  ( Y  Func  X ) )
217208, 216sylib 189 . . . . 5  |-  ( ph  -> 
<. `' F ,  H >.  e.  ( Y  Func  X
) )
21857, 58, 59, 213, 65, 63, 65, 215, 217catcco 14211 . . . 4  |-  ( ph  ->  ( <. `' F ,  H >. ( <. X ,  Y >. (comp `  C
) X ) <. F ,  G >. )  =  ( <. `' F ,  H >.  o.func 
<. F ,  G >. ) )
219 eqid 2404 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
22057, 58, 219, 210, 59, 65catcid 14213 . . . 4  |-  ( ph  ->  ( ( Id `  C ) `  X
)  =  (idfunc `  X
) )
221212, 218, 2203eqtr4d 2446 . . 3  |-  ( ph  ->  ( <. `' F ,  H >. ( <. X ,  Y >. (comp `  C
) X ) <. F ,  G >. )  =  ( ( Id
`  C ) `  X ) )
222 eqid 2404 . . . 4  |-  (  Hom  `  C )  =  (  Hom  `  C )
223 eqid 2404 . . . 4  |-  (Sect `  C )  =  (Sect `  C )
22457catccat 14214 . . . . 5  |-  ( U  e.  V  ->  C  e.  Cat )
22559, 224syl 16 . . . 4  |-  ( ph  ->  C  e.  Cat )
22657, 58, 59, 222, 65, 63catchom 14209 . . . . 5  |-  ( ph  ->  ( X (  Hom  `  C ) Y )  =  ( X  Func  Y ) )
227215, 226eleqtrrd 2481 . . . 4  |-  ( ph  -> 
<. F ,  G >.  e.  ( X (  Hom  `  C ) Y ) )
22857, 58, 59, 222, 63, 65catchom 14209 . . . . 5  |-  ( ph  ->  ( Y (  Hom  `  C ) X )  =  ( Y  Func  X ) )
229217, 228eleqtrrd 2481 . . . 4  |-  ( ph  -> 
<. `' F ,  H >.  e.  ( Y (  Hom  `  C ) X ) )
23058, 222, 213, 219, 223, 225, 65, 63, 227, 229issect2 13935 . . 3  |-  ( ph  ->  ( <. F ,  G >. ( X (Sect `  C ) Y )
<. `' F ,  H >.  <->  ( <. `' F ,  H >. (
<. X ,  Y >. (comp `  C ) X )
<. F ,  G >. )  =  ( ( Id
`  C ) `  X ) ) )
231221, 230mpbird 224 . 2  |-  ( ph  -> 
<. F ,  G >. ( X (Sect `  C
) Y ) <. `' F ,  H >. )
232 f1ococnv2 5661 . . . . . . 7  |-  ( F : R -1-1-onto-> S  ->  ( F  o.  `' F )  =  (  _I  |`  S )
)
2331, 232syl 16 . . . . . 6  |-  ( ph  ->  ( F  o.  `' F )  =  (  _I  |`  S )
)
234913adant1 975 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( u H v )  =  `' ( ( `' F `  u ) G ( `' F `  v ) ) )
235234coeq2d 4994 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( (
( `' F `  u ) G ( `' F `  v ) )  o.  ( u H v ) )  =  ( ( ( `' F `  u ) G ( `' F `  v ) )  o.  `' ( ( `' F `  u ) G ( `' F `  v ) ) ) )
236333ad2ant1 978 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  F (
( X Full  Y )  i^i  ( X Faith  Y ) ) G )
237753adant3 977 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( `' F `  u )  e.  R )
238773adant2 976 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( `' F `  v )  e.  R )
23930, 31, 32, 236, 237, 238ffthf1o 14071 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) ) )
2401003impb 1149 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( ( F `  ( `' F `  u )
) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  =  ( u (  Hom  `  Y
) v ) )
241240, 143syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( (
( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) -1-1-onto-> ( ( F `  ( `' F `  u ) ) (  Hom  `  Y
) ( F `  ( `' F `  v ) ) )  <->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y ) v ) ) )
242239, 241mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X ) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y ) v ) )
243 f1ococnv2 5661 . . . . . . . . . 10  |-  ( ( ( `' F `  u ) G ( `' F `  v ) ) : ( ( `' F `  u ) (  Hom  `  X
) ( `' F `  v ) ) -1-1-onto-> ( u (  Hom  `  Y
) v )  -> 
( ( ( `' F `  u ) G ( `' F `  v ) )  o.  `' ( ( `' F `  u ) G ( `' F `  v ) ) )  =  (  _I  |`  (
u (  Hom  `  Y
) v ) ) )
244242, 243syl 16 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( (
( `' F `  u ) G ( `' F `  v ) )  o.  `' ( ( `' F `  u ) G ( `' F `  v ) ) )  =  (  _I  |`  ( u
(  Hom  `  Y ) v ) ) )
245235, 244eqtrd 2436 . . . . . . . 8  |-  ( (
ph  /\  u  e.  S  /\  v  e.  S
)  ->  ( (
( `' F `  u ) G ( `' F `  v ) )  o.  ( u H v ) )  =  (  _I  |`  (
u (  Hom  `  Y
) v ) ) )
246245mpt2eq3dva 6097 . . . . . . 7  |-  ( ph  ->  ( u  e.  S ,  v  e.  S  |->  ( ( ( `' F `  u ) G ( `' F `  v ) )  o.  ( u H v ) ) )  =  ( u  e.  S ,  v  e.  S  |->  (  _I  |`  (
u (  Hom  `  Y
) v ) ) ) )
247 fveq2 5687 . . . . . . . . . 10  |-  ( z  =  <. u ,  v
>.  ->  ( (  Hom  `  Y ) `  z
)  =  ( (  Hom  `  Y ) `  <. u ,  v
>. ) )
248 df-ov 6043 . . . . . . . . . 10  |-  ( u (  Hom  `  Y
) v )  =  ( (  Hom  `  Y
) `  <. u ,  v >. )
249247, 248syl6eqr 2454 . . . . . . . . 9  |-  ( z  =  <. u ,  v
>.  ->  ( (  Hom  `  Y ) `  z
)  =  ( u (  Hom  `  Y
) v ) )
250249reseq2d 5105 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  (  _I  |`  (
(  Hom  `  Y ) `
 z ) )  =  (  _I  |`  (
u (  Hom  `  Y
) v ) ) )
251250mpt2mpt 6124 . . . . . . 7  |-  ( z  e.  ( S  X.  S )  |->  (  _I  |`  ( (  Hom  `  Y
) `  z )
) )  =  ( u  e.  S , 
v  e.  S  |->  (  _I  |`  ( u
(  Hom  `  Y ) v ) ) )
252246, 251syl6eqr 2454 . . . . . 6  |-  ( ph  ->  ( u  e.  S ,  v  e.  S  |->  ( ( ( `' F `  u ) G ( `' F `  v ) )  o.  ( u H v ) ) )  =  ( z  e.  ( S  X.  S ) 
|->  (  _I  |`  (
(  Hom  `  Y ) `
 z ) ) ) )
253233, 252opeq12d 3952 . . . . 5  |-  ( ph  -> 
<. ( F  o.  `' F ) ,  ( u  e.  S , 
v  e.  S  |->  ( ( ( `' F `  u ) G ( `' F `  v ) )  o.  ( u H v ) ) ) >.  =  <. (  _I  |`  S ) ,  ( z  e.  ( S  X.  S
)  |->  (  _I  |`  (
(  Hom  `  Y ) `
 z ) ) ) >. )
25452, 208, 51cofuval2 14039 . . . . 5  |-  ( ph  ->  ( <. F ,  G >.  o.func 
<. `' F ,  H >. )  =  <. ( F  o.  `' F ) ,  ( u  e.  S , 
v  e.  S  |->  ( ( ( `' F `  u ) G ( `' F `  v ) )  o.  ( u H v ) ) ) >. )
255 eqid 2404 . . . . . 6  |-  (idfunc `  Y
)  =  (idfunc `  Y
)
256255, 52, 64, 32idfuval 14028 . . . . 5  |-  ( ph  ->  (idfunc `  Y )  =  <. (  _I  |`  S ) ,  ( z  e.  ( S  X.  S
)  |->  (  _I  |`  (
(  Hom  `  Y ) `
 z ) ) ) >. )
257253, 254, 2563eqtr4d 2446 . . . 4  |-  ( ph  ->  ( <. F ,  G >.  o.func 
<. `' F ,  H >. )  =  (idfunc `  Y ) )
25857, 58, 59, 213, 63, 65, 63, 217, 215catcco 14211 . . . 4  |-  ( ph  ->  ( <. F ,  G >. ( <. Y ,  X >. (comp `  C ) Y ) <. `' F ,  H >. )  =  (
<. F ,  G >.  o.func  <. `' F ,  H >. ) )
25957, 58, 219, 255, 59, 63catcid 14213 . . . 4  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  =  (idfunc `  Y
) )
260257, 258, 2593eqtr4d 2446 . . 3  |-  ( ph  ->  ( <. F ,  G >. ( <. Y ,  X >. (comp `  C ) Y ) <. `' F ,  H >. )  =  ( ( Id `  C
) `  Y )
)
26158, 222, 213, 219, 223, 225, 63, 65, 229, 227issect2 13935 . . 3  |-  ( ph  ->  ( <. `' F ,  H >. ( Y (Sect `  C ) X )
<. F ,  G >.  <->  ( <. F ,  G >. (
<. Y ,  X >. (comp `  C ) Y )
<. `' F ,  H >. )  =  ( ( Id
`  C ) `  Y ) ) )
262260, 261mpbird 224 . 2  |-  ( ph  -> 
<. `' F ,  H >. ( Y (Sect `  C
) X ) <. F ,  G >. )
263 catcisolem.i . . 3  |-  I  =  (Inv `  C )
26458, 263, 225, 65, 63, 223isinv 13940 . 2  |-  ( ph  ->  ( <. F ,  G >. ( X I Y ) <. `' F ,  H >. 
<->  ( <. F ,  G >. ( X (Sect `  C ) Y )
<. `' F ,  H >.  /\ 
<. `' F ,  H >. ( Y (Sect `  C
) X ) <. F ,  G >. ) ) )
265231, 262, 264mpbir2and 889 1  |-  ( ph  -> 
<. F ,  G >. ( X I Y )
<. `' F ,  H >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    i^i cin 3279   <.cop 3777   class class class wbr 4172    e. cmpt 4226    _I cid 4453    X. cxp 4835   `'ccnv 4836    |` cres 4839    o. ccom 4841    Fn wfn 5408   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   Basecbs 13424    Hom chom 13495  compcco 13496   Catccat 13844   Idccid 13845  Sectcsect 13925  Invcinv 13926    Func cfunc 14006  idfunccidfu 14007    o.func ccofu 14008   Full cful 14054   Faith cfth 14055  CatCatccatc 14204
This theorem is referenced by:  catciso  14217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-hom 13508  df-cco 13509  df-cat 13848  df-cid 13849  df-sect 13928  df-inv 13929  df-func 14010  df-idfu 14011  df-cofu 14012  df-full 14056  df-fth 14057  df-catc 14205
  Copyright terms: Public domain W3C validator