MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catciso Structured version   Unicode version

Theorem catciso 14996
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c  |-  C  =  (CatCat `  U )
catciso.b  |-  B  =  ( Base `  C
)
catciso.r  |-  R  =  ( Base `  X
)
catciso.s  |-  S  =  ( Base `  Y
)
catciso.u  |-  ( ph  ->  U  e.  V )
catciso.x  |-  ( ph  ->  X  e.  B )
catciso.y  |-  ( ph  ->  Y  e.  B )
catciso.i  |-  I  =  (  Iso  `  C
)
Assertion
Ref Expression
catciso  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
( F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) ) )

Proof of Theorem catciso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 14793 . . . . 5  |-  Rel  ( X  Func  Y )
2 catciso.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  C
)
3 eqid 2443 . . . . . . . . . . . . . 14  |-  (Inv `  C )  =  (Inv
`  C )
4 catciso.u . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  V )
5 catciso.c . . . . . . . . . . . . . . . 16  |-  C  =  (CatCat `  U )
65catccat 14993 . . . . . . . . . . . . . . 15  |-  ( U  e.  V  ->  C  e.  Cat )
74, 6syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Cat )
8 catciso.x . . . . . . . . . . . . . 14  |-  ( ph  ->  X  e.  B )
9 catciso.y . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  e.  B )
10 catciso.i . . . . . . . . . . . . . 14  |-  I  =  (  Iso  `  C
)
112, 3, 7, 8, 9, 10isoval 14724 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X I Y )  =  dom  ( X (Inv `  C ) Y ) )
1211eleq2d 2510 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
F  e.  dom  ( X (Inv `  C ) Y ) ) )
1312biimpa 484 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  dom  ( X (Inv `  C ) Y ) )
147adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  C  e.  Cat )
158adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  X  e.  B )
169adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Y  e.  B )
172, 3, 14, 15, 16invfun 14723 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Fun  ( X (Inv `  C ) Y ) )
18 funfvbrb 5837 . . . . . . . . . . . 12  |-  ( Fun  ( X (Inv `  C ) Y )  ->  ( F  e. 
dom  ( X (Inv
`  C ) Y )  <->  F ( X (Inv
`  C ) Y ) ( ( X (Inv `  C ) Y ) `  F
) ) )
1917, 18syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  dom  ( X (Inv
`  C ) Y )  <->  F ( X (Inv
`  C ) Y ) ( ( X (Inv `  C ) Y ) `  F
) ) )
2013, 19mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F ( X (Inv `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )
21 eqid 2443 . . . . . . . . . . 11  |-  (Sect `  C )  =  (Sect `  C )
222, 3, 14, 15, 16, 21isinv 14719 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Inv `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  <-> 
( F ( X (Sect `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F )  /\  (
( X (Inv `  C ) Y ) `
 F ) ( Y (Sect `  C
) X ) F ) ) )
2320, 22mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Sect `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  /\  ( ( X (Inv `  C ) Y ) `  F
) ( Y (Sect `  C ) X ) F ) )
2423simpld 459 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F ( X (Sect `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )
25 eqid 2443 . . . . . . . . 9  |-  ( Hom  `  C )  =  ( Hom  `  C )
26 eqid 2443 . . . . . . . . 9  |-  (comp `  C )  =  (comp `  C )
27 eqid 2443 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
282, 25, 26, 27, 21, 14, 15, 16issect 14713 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Sect `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  ( ( X (Inv
`  C ) Y ) `  F )  e.  ( Y ( Hom  `  C ) X )  /\  (
( ( X (Inv
`  C ) Y ) `  F ) ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) ) ) )
2924, 28mpbid 210 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  ( X ( Hom  `  C ) Y )  /\  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y ( Hom  `  C
) X )  /\  ( ( ( X (Inv `  C ) Y ) `  F
) ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) )
3029simp1d 1000 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( X ( Hom  `  C
) Y ) )
315, 2, 4, 25, 8, 9catchom 14988 . . . . . . 7  |-  ( ph  ->  ( X ( Hom  `  C ) Y )  =  ( X  Func  Y ) )
3231adantr 465 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( X
( Hom  `  C ) Y )  =  ( X  Func  Y )
)
3330, 32eleqtrd 2519 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( X  Func  Y ) )
34 1st2nd 6641 . . . . 5  |-  ( ( Rel  ( X  Func  Y )  /\  F  e.  ( X  Func  Y
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
351, 33, 34sylancr 663 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
36 1st2ndbr 6644 . . . . . . 7  |-  ( ( Rel  ( X  Func  Y )  /\  F  e.  ( X  Func  Y
) )  ->  ( 1st `  F ) ( X  Func  Y )
( 2nd `  F
) )
371, 33, 36sylancr 663 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) ( X 
Func  Y ) ( 2nd `  F ) )
38 catciso.r . . . . . . . . . 10  |-  R  =  ( Base `  X
)
39 eqid 2443 . . . . . . . . . 10  |-  ( Hom  `  X )  =  ( Hom  `  X )
40 eqid 2443 . . . . . . . . . 10  |-  ( Hom  `  Y )  =  ( Hom  `  Y )
4137adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  F ) ( X 
Func  Y ) ( 2nd `  F ) )
42 simprl 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  x  e.  R )
43 simprr 756 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  y  e.  R )
4438, 39, 40, 41, 42, 43funcf2 14799 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  Y
) ( ( 1st `  F ) `  y
) ) )
45 catciso.s . . . . . . . . . . 11  |-  S  =  ( Base `  Y
)
46 relfunc 14793 . . . . . . . . . . . . 13  |-  Rel  ( Y  Func  X )
4729simp2d 1001 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y ( Hom  `  C
) X ) )
485, 2, 4, 25, 9, 8catchom 14988 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y ( Hom  `  C ) X )  =  ( Y  Func  X ) )
4948adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( Y
( Hom  `  C ) X )  =  ( Y  Func  X )
)
5047, 49eleqtrd 2519 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y 
Func  X ) )
51 1st2ndbr 6644 . . . . . . . . . . . . 13  |-  ( ( Rel  ( Y  Func  X )  /\  ( ( X (Inv `  C
) Y ) `  F )  e.  ( Y  Func  X )
)  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5246, 50, 51sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5352adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5438, 45, 41funcf1 14797 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  F ) : R --> S )
5554, 42ffvelrnd 5865 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  F ) `  x )  e.  S
)
5654, 43ffvelrnd 5865 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  F ) `  y )  e.  S
)
5745, 40, 39, 53, 55, 56funcf2 14799 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  x )
) ( Hom  `  X
) ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) ) )
58 eqidd 2444 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
)  =  ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
5929simp3d 1002 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
604adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  U  e.  V )
615, 2, 60, 26, 15, 16, 15, 33, 50catcco 14990 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) )
62 eqid 2443 . . . . . . . . . . . . . . . . . . 19  |-  (idfunc `  X
)  =  (idfunc `  X
)
635, 2, 27, 62, 4, 8catcid 14992 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( Id `  C ) `  X
)  =  (idfunc `  X
) )
6463adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( Id `  C ) `  X )  =  (idfunc `  X ) )
6559, 61, 643eqtr3d 2483 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F )  o.func  F
)  =  (idfunc `  X
) )
6665adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( X (Inv `  C ) Y ) `
 F )  o.func  F
)  =  (idfunc `  X
) )
6766fveq2d 5716 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 1st `  (idfunc `  X
) ) )
6867fveq1d 5714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  x )  =  ( ( 1st `  (idfunc `  X ) ) `  x ) )
6933adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  F  e.  ( X  Func  Y ) )
7050adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y 
Func  X ) )
7138, 69, 70, 42cofu1 14815 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  x )  =  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 x ) ) )
725, 2, 4catcbas 14986 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
73 inss2 3592 . . . . . . . . . . . . . . . . 17  |-  ( U  i^i  Cat )  C_  Cat
7472, 73syl6eqss 3427 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  C_  Cat )
7574, 8sseldd 3378 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  e.  Cat )
7675ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  X  e.  Cat )
7762, 38, 76, 42idfu1 14811 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  (idfunc `  X ) ) `  x )  =  x )
7868, 71, 773eqtr3d 2483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) `  (
( 1st `  F
) `  x )
)  =  x )
7967fveq1d 5714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  y )  =  ( ( 1st `  (idfunc `  X ) ) `  y ) )
8038, 69, 70, 43cofu1 14815 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  y )  =  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) )
8162, 38, 76, 43idfu1 14811 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  (idfunc `  X ) ) `  y )  =  y )
8279, 80, 813eqtr3d 2483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) `  (
( 1st `  F
) `  y )
)  =  y )
8378, 82oveq12d 6130 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( Hom  `  X ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  =  ( x ( Hom  `  X
) y ) )
8458, 83feq23d 5575 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  x )
) ( Hom  `  X
) ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) )  <->  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x ( Hom  `  X )
y ) ) )
8557, 84mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x ( Hom  `  X )
y ) )
8623simprd 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
) ( Y (Sect `  C ) X ) F )
872, 25, 26, 27, 21, 14, 16, 15issect 14713 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) ( Y (Sect `  C
) X ) F  <-> 
( ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y ( Hom  `  C
) X )  /\  F  e.  ( X
( Hom  `  C ) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) ( ( X (Inv `  C ) Y ) `
 F ) )  =  ( ( Id
`  C ) `  Y ) ) ) )
8886, 87mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F )  e.  ( Y ( Hom  `  C ) X )  /\  F  e.  ( X ( Hom  `  C
) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) ( ( X (Inv `  C ) Y ) `
 F ) )  =  ( ( Id
`  C ) `  Y ) ) )
8988simp3d 1002 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )  =  ( ( Id `  C ) `  Y
) )
905, 2, 60, 26, 16, 15, 16, 50, 33catcco 14990 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )  =  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )
91 eqid 2443 . . . . . . . . . . . . . . . 16  |-  (idfunc `  Y
)  =  (idfunc `  Y
)
925, 2, 27, 91, 4, 9catcid 14992 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  =  (idfunc `  Y
) )
9392adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( Id `  C ) `  Y )  =  (idfunc `  Y ) )
9489, 90, 933eqtr3d 2483 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) )  =  (idfunc `  Y
) )
9594adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) )  =  (idfunc `  Y
) )
9695fveq2d 5716 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 2nd `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( 2nd `  (idfunc `  Y
) ) )
9796oveqd 6129 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( ( 1st `  F ) `
 x ) ( 2nd `  (idfunc `  Y
) ) ( ( 1st `  F ) `
 y ) ) )
9845, 70, 69, 55, 56cofu2nd 14816 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( ( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  o.  (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
9978, 82oveq12d 6130 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  =  ( x ( 2nd `  F
) y ) )
10099coeq1d 5022 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  o.  (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  ( ( x ( 2nd `  F ) y )  o.  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) ) )
10198, 100eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
10274ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  B  C_  Cat )
1039ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  Y  e.  B )
104102, 103sseldd 3378 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  Y  e.  Cat )
10591, 45, 104, 40, 55, 56idfu2nd 14808 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (idfunc `  Y
) ) ( ( 1st `  F ) `
 y ) )  =  (  _I  |`  (
( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
10697, 101, 1053eqtr3d 2483 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  (  _I  |`  ( (
( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
10766fveq2d 5716 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 2nd `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 2nd `  (idfunc `  X
) ) )
108107oveqd 6129 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (
( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) ) y )  =  ( x ( 2nd `  (idfunc `  X
) ) y ) )
10938, 69, 70, 42, 43cofu2nd 14816 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (
( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) ) y )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) )
11062, 38, 76, 39, 42, 43idfu2nd 14808 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (idfunc `  X
) ) y )  =  (  _I  |`  (
x ( Hom  `  X
) y ) ) )
111108, 109, 1103eqtr3d 2483 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) )  =  (  _I  |`  (
x ( Hom  `  X
) y ) ) )
112 fcof1o 6018 . . . . . . . . 9  |-  ( ( ( ( x ( 2nd `  F ) y ) : ( x ( Hom  `  X
) y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
)  /\  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x ( Hom  `  X )
y ) )  /\  ( ( ( x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  (  _I  |`  ( (
( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) )  /\  (
( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) )  =  (  _I  |`  (
x ( Hom  `  X
) y ) ) ) )  ->  (
( x ( 2nd `  F ) y ) : ( x ( Hom  `  X )
y ) -1-1-onto-> ( ( ( 1st `  F ) `  x
) ( Hom  `  Y
) ( ( 1st `  F ) `  y
) )  /\  `' ( x ( 2nd `  F ) y )  =  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) ) )
11344, 85, 106, 111, 112syl22anc 1219 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
x ( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
)  /\  `' (
x ( 2nd `  F
) y )  =  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
114113simpld 459 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
115114ralrimivva 2829 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  A. x  e.  R  A. y  e.  R  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
11638, 39, 40isffth2 14847 . . . . . 6  |-  ( ( 1st `  F ) ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) ( 2nd `  F )  <->  ( ( 1st `  F ) ( X  Func  Y )
( 2nd `  F
)  /\  A. x  e.  R  A. y  e.  R  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
( Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
11737, 115, 116sylanbrc 664 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) ( ( X Full  Y )  i^i  ( X Faith  Y ) ) ( 2nd `  F
) )
118 df-br 4314 . . . . 5  |-  ( ( 1st `  F ) ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) ( 2nd `  F )  <->  <. ( 1st `  F ) ,  ( 2nd `  F )
>.  e.  ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) )
119117, 118sylib 196 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  <. ( 1st `  F ) ,  ( 2nd `  F )
>.  e.  ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) )
12035, 119eqeltrd 2517 . . 3  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) )
12138, 45, 37funcf1 14797 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) : R --> S )
12245, 38, 52funcf1 14797 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) : S --> R )
12394fveq2d 5716 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( 1st `  (idfunc `  Y
) ) )
12445, 50, 33cofu1st 14814 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ) )
12574, 9sseldd 3378 . . . . . . . 8  |-  ( ph  ->  Y  e.  Cat )
126125adantr 465 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Y  e.  Cat )
12791, 45, 126idfu1st 14810 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  (idfunc `  Y ) )  =  (  _I  |`  S ) )
128123, 124, 1273eqtr3d 2483 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  F )  o.  ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) )  =  (  _I  |`  S ) )
12965fveq2d 5716 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 1st `  (idfunc `  X
) ) )
13038, 33, 50cofu1st 14814 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) )  o.  ( 1st `  F
) ) )
13175adantr 465 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  X  e.  Cat )
13262, 38, 131idfu1st 14810 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  (idfunc `  X ) )  =  (  _I  |`  R ) )
133129, 130, 1323eqtr3d 2483 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) )  o.  ( 1st `  F ) )  =  (  _I  |`  R ) )
134 fcof1o 6018 . . . . 5  |-  ( ( ( ( 1st `  F
) : R --> S  /\  ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) : S --> R )  /\  ( ( ( 1st `  F )  o.  ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  (  _I  |`  S )  /\  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) )  o.  ( 1st `  F ) )  =  (  _I  |`  R ) ) )  ->  (
( 1st `  F
) : R -1-1-onto-> S  /\  `' ( 1st `  F
)  =  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ) )
135121, 122, 128, 133, 134syl22anc 1219 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  F ) : R -1-1-onto-> S  /\  `' ( 1st `  F )  =  ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) ) )
136135simpld 459 . . 3  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) : R -1-1-onto-> S
)
137120, 136jca 532 . 2  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )
1387adantr 465 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  C  e.  Cat )
1398adantr 465 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  X  e.  B )
1409adantr 465 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  Y  e.  B )
141 inss1 3591 . . . . . . 7  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X Full  Y )
142 fullfunc 14837 . . . . . . 7  |-  ( X Full 
Y )  C_  ( X  Func  Y )
143141, 142sstri 3386 . . . . . 6  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X  Func  Y )
144 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y ) ) )
145143, 144sseldi 3375 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( X  Func  Y ) )
1461, 145, 34sylancr 663 . . . 4  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F )
>. )
1474adantr 465 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  U  e.  V )
148 eqid 2443 . . . . 5  |-  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F ) `  x
) ( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) )  =  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F ) `  x
) ( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) )
149146, 144eqeltrrd 2518 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  <. ( 1st `  F
) ,  ( 2nd `  F ) >.  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) ) )
150149, 118sylibr 212 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  -> 
( 1st `  F
) ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) ( 2nd `  F ) )
151 simprr 756 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  -> 
( 1st `  F
) : R -1-1-onto-> S )
1525, 2, 38, 45, 147, 139, 140, 3, 148, 150, 151catcisolem 14995 . . . 4  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  <. ( 1st `  F
) ,  ( 2nd `  F ) >. ( X (Inv `  C ) Y ) <. `' ( 1st `  F ) ,  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F
) `  x )
( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) ) >. )
153146, 152eqbrtrd 4333 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F ( X (Inv
`  C ) Y ) <. `' ( 1st `  F ) ,  ( x  e.  S , 
y  e.  S  |->  `' ( ( `' ( 1st `  F ) `
 x ) ( 2nd `  F ) ( `' ( 1st `  F ) `  y
) ) ) >.
)
1542, 3, 138, 139, 140, 10, 153inviso1 14725 . 2  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( X I Y ) )
155137, 154impbida 828 1  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
( F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736    i^i cin 3348    C_ wss 3349   <.cop 3904   class class class wbr 4313    _I cid 4652   `'ccnv 4860   dom cdm 4861    |` cres 4863    o. ccom 4865   Rel wrel 4866   Fun wfun 5433   -->wf 5435   -1-1-onto->wf1o 5438   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   1stc1st 6596   2ndc2nd 6597   Basecbs 14195   Hom chom 14270  compcco 14271   Catccat 14623   Idccid 14624  Sectcsect 14704  Invcinv 14705    Iso ciso 14706    Func cfunc 14785  idfunccidfu 14786    o.func ccofu 14787   Full cful 14833   Faith cfth 14834  CatCatccatc 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-hom 14283  df-cco 14284  df-cat 14627  df-cid 14628  df-sect 14707  df-inv 14708  df-iso 14709  df-func 14789  df-idfu 14790  df-cofu 14791  df-full 14835  df-fth 14836  df-catc 14984
This theorem is referenced by:  yoniso  15116
  Copyright terms: Public domain W3C validator