MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcid Structured version   Unicode version

Theorem catcid 14986
Description: The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catccatid.c  |-  C  =  (CatCat `  U )
catccatid.b  |-  B  =  ( Base `  C
)
catcid.o  |-  .1.  =  ( Id `  C )
catcid.i  |-  I  =  (idfunc `  X )
catcid.u  |-  ( ph  ->  U  e.  V )
catcid.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
catcid  |-  ( ph  ->  (  .1.  `  X
)  =  I )

Proof of Theorem catcid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 catcid.o . . . 4  |-  .1.  =  ( Id `  C )
2 catcid.u . . . . . 6  |-  ( ph  ->  U  e.  V )
3 catccatid.c . . . . . . 7  |-  C  =  (CatCat `  U )
4 catccatid.b . . . . . . 7  |-  B  =  ( Base `  C
)
53, 4catccatid 14985 . . . . . 6  |-  ( U  e.  V  ->  ( C  e.  Cat  /\  ( Id `  C )  =  ( x  e.  B  |->  (idfunc `  x ) ) ) )
62, 5syl 16 . . . . 5  |-  ( ph  ->  ( C  e.  Cat  /\  ( Id `  C
)  =  ( x  e.  B  |->  (idfunc `  x
) ) ) )
76simprd 463 . . . 4  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  B  |->  (idfunc `  x
) ) )
81, 7syl5eq 2487 . . 3  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  (idfunc `  x
) ) )
9 simpr 461 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  x  =  X )
109fveq2d 5710 . . 3  |-  ( (
ph  /\  x  =  X )  ->  (idfunc `  x
)  =  (idfunc `  X
) )
11 catcid.x . . 3  |-  ( ph  ->  X  e.  B )
12 fvex 5716 . . . 4  |-  (idfunc `  X
)  e.  _V
1312a1i 11 . . 3  |-  ( ph  ->  (idfunc `  X )  e.  _V )
148, 10, 11, 13fvmptd 5794 . 2  |-  ( ph  ->  (  .1.  `  X
)  =  (idfunc `  X
) )
15 catcid.i . 2  |-  I  =  (idfunc `  X )
1614, 15syl6eqr 2493 1  |-  ( ph  ->  (  .1.  `  X
)  =  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2987    e. cmpt 4365   ` cfv 5433   Basecbs 14189   Catccat 14617   Idccid 14618  idfunccidfu 14780  CatCatccatc 14977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-er 7116  df-map 7231  df-ixp 7279  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-5 10398  df-6 10399  df-7 10400  df-8 10401  df-9 10402  df-10 10403  df-n0 10595  df-z 10662  df-dec 10771  df-uz 10877  df-fz 11453  df-struct 14191  df-ndx 14192  df-slot 14193  df-base 14194  df-hom 14277  df-cco 14278  df-cat 14621  df-cid 14622  df-func 14783  df-idfu 14784  df-cofu 14785  df-catc 14978
This theorem is referenced by:  catcisolem  14989  catciso  14990
  Copyright terms: Public domain W3C validator