MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfuccl Structured version   Unicode version

Theorem catcfuccl 15942
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcfuccl.c  |-  C  =  (CatCat `  U )
catcfuccl.b  |-  B  =  ( Base `  C
)
catcfuccl.o  |-  Q  =  ( X FuncCat  Y )
catcfuccl.u  |-  ( ph  ->  U  e. WUni )
catcfuccl.1  |-  ( ph  ->  om  e.  U )
catcfuccl.x  |-  ( ph  ->  X  e.  B )
catcfuccl.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
catcfuccl  |-  ( ph  ->  Q  e.  B )

Proof of Theorem catcfuccl
Dummy variables  a 
b  f  g  h  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5  |-  Q  =  ( X FuncCat  Y )
2 eqid 2423 . . . . 5  |-  ( X 
Func  Y )  =  ( X  Func  Y )
3 eqid 2423 . . . . 5  |-  ( X Nat 
Y )  =  ( X Nat  Y )
4 eqid 2423 . . . . 5  |-  ( Base `  X )  =  (
Base `  X )
5 eqid 2423 . . . . 5  |-  (comp `  Y )  =  (comp `  Y )
6 inss2 3621 . . . . . 6  |-  ( U  i^i  Cat )  C_  Cat
7 catcfuccl.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
8 catcfuccl.c . . . . . . . 8  |-  C  =  (CatCat `  U )
9 catcfuccl.b . . . . . . . 8  |-  B  =  ( Base `  C
)
10 catcfuccl.u . . . . . . . 8  |-  ( ph  ->  U  e. WUni )
118, 9, 10catcbas 15930 . . . . . . 7  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
127, 11eleqtrd 2503 . . . . . 6  |-  ( ph  ->  X  e.  ( U  i^i  Cat ) )
136, 12sseldi 3400 . . . . 5  |-  ( ph  ->  X  e.  Cat )
14 catcfuccl.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
1514, 11eleqtrd 2503 . . . . . 6  |-  ( ph  ->  Y  e.  ( U  i^i  Cat ) )
166, 15sseldi 3400 . . . . 5  |-  ( ph  ->  Y  e.  Cat )
17 eqidd 2424 . . . . 5  |-  ( ph  ->  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) )
181, 2, 3, 4, 5, 13, 16, 17fucval 15801 . . . 4  |-  ( ph  ->  Q  =  { <. (
Base `  ndx ) ,  ( X  Func  Y
) >. ,  <. ( Hom  `  ndx ) ,  ( X Nat  Y )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
19 df-base 15064 . . . . . . 7  |-  Base  = Slot  1
20 catcfuccl.1 . . . . . . . 8  |-  ( ph  ->  om  e.  U )
2110, 20wunndx 15075 . . . . . . 7  |-  ( ph  ->  ndx  e.  U )
2219, 10, 21wunstr 15078 . . . . . 6  |-  ( ph  ->  ( Base `  ndx )  e.  U )
23 inss1 3620 . . . . . . . 8  |-  ( U  i^i  Cat )  C_  U
2423, 12sseldi 3400 . . . . . . 7  |-  ( ph  ->  X  e.  U )
2523, 15sseldi 3400 . . . . . . 7  |-  ( ph  ->  Y  e.  U )
2610, 24, 25wunfunc 15742 . . . . . 6  |-  ( ph  ->  ( X  Func  Y
)  e.  U )
2710, 22, 26wunop 9093 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( X  Func  Y ) >.  e.  U
)
28 df-hom 15152 . . . . . . 7  |-  Hom  = Slot ; 1 4
2928, 10, 21wunstr 15078 . . . . . 6  |-  ( ph  ->  ( Hom  `  ndx )  e.  U )
3010, 24, 25wunnat 15799 . . . . . 6  |-  ( ph  ->  ( X Nat  Y )  e.  U )
3110, 29, 30wunop 9093 . . . . 5  |-  ( ph  -> 
<. ( Hom  `  ndx ) ,  ( X Nat  Y ) >.  e.  U
)
32 df-cco 15153 . . . . . . 7  |- comp  = Slot ; 1 5
3332, 10, 21wunstr 15078 . . . . . 6  |-  ( ph  ->  (comp `  ndx )  e.  U )
3410, 26, 26wunxp 9095 . . . . . . . 8  |-  ( ph  ->  ( ( X  Func  Y )  X.  ( X 
Func  Y ) )  e.  U )
3510, 34, 26wunxp 9095 . . . . . . 7  |-  ( ph  ->  ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) )  e.  U
)
3632, 10, 25wunstr 15078 . . . . . . . . . . . . . 14  |-  ( ph  ->  (comp `  Y )  e.  U )
3710, 36wunrn 9100 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  (comp `  Y
)  e.  U )
3810, 37wununi 9077 . . . . . . . . . . . 12  |-  ( ph  ->  U. ran  (comp `  Y )  e.  U
)
3910, 38wunrn 9100 . . . . . . . . . . 11  |-  ( ph  ->  ran  U. ran  (comp `  Y )  e.  U
)
4010, 39wununi 9077 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  (comp `  Y )  e.  U )
4110, 40wunpw 9078 . . . . . . . . 9  |-  ( ph  ->  ~P U. ran  U. ran  (comp `  Y )  e.  U )
4219, 10, 24wunstr 15078 . . . . . . . . 9  |-  ( ph  ->  ( Base `  X
)  e.  U )
4310, 41, 42wunmap 9097 . . . . . . . 8  |-  ( ph  ->  ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  e.  U
)
4410, 30wunrn 9100 . . . . . . . . . 10  |-  ( ph  ->  ran  ( X Nat  Y
)  e.  U )
4510, 44wununi 9077 . . . . . . . . 9  |-  ( ph  ->  U. ran  ( X Nat 
Y )  e.  U
)
4610, 45, 45wunxp 9095 . . . . . . . 8  |-  ( ph  ->  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat  Y ) )  e.  U )
4710, 43, 46wunpm 9096 . . . . . . 7  |-  ( ph  ->  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) ) 
^pm  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat 
Y ) ) )  e.  U )
48 fvex 5830 . . . . . . . . . . 11  |-  ( 1st `  v )  e.  _V
49 fvex 5830 . . . . . . . . . . . . . 14  |-  ( 2nd `  v )  e.  _V
50 ovex 6272 . . . . . . . . . . . . . . . . 17  |-  ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  e.  _V
51 ovex 6272 . . . . . . . . . . . . . . . . . . . 20  |-  ( X Nat 
Y )  e.  _V
5251rnex 6680 . . . . . . . . . . . . . . . . . . 19  |-  ran  ( X Nat  Y )  e.  _V
5352uniex 6540 . . . . . . . . . . . . . . . . . 18  |-  U. ran  ( X Nat  Y )  e.  _V
5453, 53xpex 6548 . . . . . . . . . . . . . . . . 17  |-  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat  Y ) )  e. 
_V
55 eqid 2423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )  =  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )
56 ovssunirn 6273 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  C_  U.
ran  ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )
57 ovssunirn 6273 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )  C_  U. ran  (comp `  Y )
58 rnss 5020 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )  C_  U. ran  (comp `  Y )  ->  ran  ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
)  C_  ran  U. ran  (comp `  Y ) )
59 uniss 4178 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ran  ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
)  C_  ran  U. ran  (comp `  Y )  ->  U. ran  ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )  C_  U. ran  U.
ran  (comp `  Y )
)
6057, 58, 59mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  U. ran  ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
)  C_  U. ran  U. ran  (comp `  Y )
6156, 60sstri 3411 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  C_  U.
ran  U. ran  (comp `  Y )
62 ovex 6272 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  e. 
_V
6362elpw 3925 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( b `  x
) ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) )  e.  ~P U. ran  U.
ran  (comp `  Y )  <->  ( ( b `  x
) ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) 
C_  U. ran  U. ran  (comp `  Y ) )
6461, 63mpbir 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  e. 
~P U. ran  U. ran  (comp `  Y )
6564a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( Base `  X
)  ->  ( (
b `  x )
( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  e. 
~P U. ran  U. ran  (comp `  Y ) )
6655, 65fmpti 5999 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) : ( Base `  X ) --> ~P U. ran  U. ran  (comp `  Y )
67 fvex 5830 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  (comp `  Y )  e.  _V
6867rnex 6680 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ran  (comp `  Y )  e.  _V
6968uniex 6540 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  U. ran  (comp `  Y )  e. 
_V
7069rnex 6680 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ran  U. ran  (comp `  Y )  e.  _V
7170uniex 6540 . . . . . . . . . . . . . . . . . . . . . 22  |-  U. ran  U.
ran  (comp `  Y )  e.  _V
7271pwex 4545 . . . . . . . . . . . . . . . . . . . . 21  |-  ~P U. ran  U. ran  (comp `  Y )  e.  _V
73 fvex 5830 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  X )  e.  _V
7472, 73elmap 7450 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) )  e.  ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  <-> 
( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) : ( Base `  X ) --> ~P U. ran  U. ran  (comp `  Y ) )
7566, 74mpbir 212 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )  e.  ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )
7675rgen2w 2722 . . . . . . . . . . . . . . . . . 18  |-  A. b  e.  ( g ( X Nat 
Y ) h ) A. a  e.  ( f ( X Nat  Y
) g ) ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) )  e.  ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )
77 eqid 2423 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat 
Y ) g ) 
|->  ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )
7877fmpt2 6813 . . . . . . . . . . . . . . . . . 18  |-  ( A. b  e.  ( g
( X Nat  Y ) h ) A. a  e.  ( f ( X Nat 
Y ) g ) ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )  e.  ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  <-> 
( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) : ( ( g ( X Nat 
Y ) h )  X.  ( f ( X Nat  Y ) g ) ) --> ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) ) )
7976, 78mpbi 211 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat 
Y ) g ) 
|->  ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) : ( ( g ( X Nat 
Y ) h )  X.  ( f ( X Nat  Y ) g ) ) --> ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )
80 ovssunirn 6273 . . . . . . . . . . . . . . . . . 18  |-  ( g ( X Nat  Y ) h )  C_  U. ran  ( X Nat  Y )
81 ovssunirn 6273 . . . . . . . . . . . . . . . . . 18  |-  ( f ( X Nat  Y ) g )  C_  U. ran  ( X Nat  Y )
82 xpss12 4897 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g ( X Nat 
Y ) h ) 
C_  U. ran  ( X Nat 
Y )  /\  (
f ( X Nat  Y
) g )  C_  U.
ran  ( X Nat  Y
) )  ->  (
( g ( X Nat 
Y ) h )  X.  ( f ( X Nat  Y ) g ) )  C_  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
8380, 81, 82mp2an 676 . . . . . . . . . . . . . . . . 17  |-  ( ( g ( X Nat  Y
) h )  X.  ( f ( X Nat 
Y ) g ) )  C_  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat  Y ) )
84 elpm2r 7439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  e.  _V  /\  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
)  e.  _V )  /\  ( ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) : ( ( g ( X Nat  Y
) h )  X.  ( f ( X Nat 
Y ) g ) ) --> ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  /\  ( ( g ( X Nat  Y ) h )  X.  (
f ( X Nat  Y
) g ) ) 
C_  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat 
Y ) ) ) )  ->  ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
8550, 54, 79, 83, 84mp4an 677 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat 
Y ) g ) 
|->  ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
8685sbcth 3252 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  v )  e.  _V  ->  [. ( 2nd `  v )  / 
g ]. ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
87 sbcel1g 3744 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  v )  e.  _V  ->  ( [. ( 2nd `  v
)  /  g ]. ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )  <->  [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) ) )
8886, 87mpbid 213 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  v )  e.  _V  ->  [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
8949, 88ax-mp 5 . . . . . . . . . . . . 13  |-  [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
9089sbcth 3252 . . . . . . . . . . . 12  |-  ( ( 1st `  v )  e.  _V  ->  [. ( 1st `  v )  / 
f ]. [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
91 sbcel1g 3744 . . . . . . . . . . . 12  |-  ( ( 1st `  v )  e.  _V  ->  ( [. ( 1st `  v
)  /  f ]. [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )  <->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) ) )
9290, 91mpbid 213 . . . . . . . . . . 11  |-  ( ( 1st `  v )  e.  _V  ->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
9348, 92ax-mp 5 . . . . . . . . . 10  |-  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
9493rgen2w 2722 . . . . . . . . 9  |-  A. v  e.  ( ( X  Func  Y )  X.  ( X 
Func  Y ) ) A. h  e.  ( X  Func  Y ) [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
95 eqid 2423 . . . . . . . . . 10  |-  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
9695fmpt2 6813 . . . . . . . . 9  |-  ( A. v  e.  ( ( X  Func  Y )  X.  ( X  Func  Y
) ) A. h  e.  ( X  Func  Y
) [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )  <->  ( v  e.  ( ( X  Func  Y )  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) : ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) ) --> ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
9794, 96mpbi 211 . . . . . . . 8  |-  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) : ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) ) --> ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
9897a1i 11 . . . . . . 7  |-  ( ph  ->  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) : ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) ) --> ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
9910, 35, 47, 98wunf 9098 . . . . . 6  |-  ( ph  ->  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  e.  U )
10010, 33, 99wunop 9093 . . . . 5  |-  ( ph  -> 
<. (comp `  ndx ) ,  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >.  e.  U )
10110, 27, 31, 100wuntp 9082 . . . 4  |-  ( ph  ->  { <. ( Base `  ndx ) ,  ( X  Func  Y ) >. ,  <. ( Hom  `  ndx ) ,  ( X Nat  Y )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. }  e.  U )
10218, 101eqeltrd 2501 . . 3  |-  ( ph  ->  Q  e.  U )
1031, 13, 16fuccat 15813 . . 3  |-  ( ph  ->  Q  e.  Cat )
104102, 103elind 3588 . 2  |-  ( ph  ->  Q  e.  ( U  i^i  Cat ) )
105104, 11eleqtrrd 2504 1  |-  ( ph  ->  Q  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1872   A.wral 2709   _Vcvv 3017   [.wsbc 3237   [_csb 3333    i^i cin 3373    C_ wss 3374   ~Pcpw 3919   {ctp 3940   <.cop 3942   U.cuni 4157    |-> cmpt 4420    X. cxp 4789   ran crn 4792   -->wf 5535   ` cfv 5539  (class class class)co 6244    |-> cmpt2 6246   omcom 6645   1stc1st 6744   2ndc2nd 6745    ^m cmap 7422    ^pm cpm 7423  WUnicwun 9071   1c1 9486   4c4 10607   5c5 10608  ;cdc 10997   ndxcnx 15056   Basecbs 15059   Hom chom 15139  compcco 15140   Catccat 15508    Func cfunc 15697   Nat cnat 15784   FuncCat cfuc 15785  CatCatccatc 15927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536  ax-inf2 8094  ax-cnex 9541  ax-resscn 9542  ax-1cn 9543  ax-icn 9544  ax-addcl 9545  ax-addrcl 9546  ax-mulcl 9547  ax-mulrcl 9548  ax-mulcom 9549  ax-addass 9550  ax-mulass 9551  ax-distr 9552  ax-i2m1 9553  ax-1ne0 9554  ax-1rid 9555  ax-rnegex 9556  ax-rrecex 9557  ax-cnre 9558  ax-pre-lttri 9559  ax-pre-lttrn 9560  ax-pre-ltadd 9561  ax-pre-mulgt0 9562
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-nel 2597  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-riota 6206  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-om 6646  df-1st 6746  df-2nd 6747  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-1o 7132  df-oadd 7136  df-omul 7137  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-pm 7425  df-ixp 7473  df-en 7520  df-dom 7521  df-sdom 7522  df-fin 7523  df-wun 9073  df-ni 9243  df-pli 9244  df-mi 9245  df-lti 9246  df-plpq 9279  df-mpq 9280  df-ltpq 9281  df-enq 9282  df-nq 9283  df-erq 9284  df-plq 9285  df-mq 9286  df-1nq 9287  df-rq 9288  df-ltnq 9289  df-np 9352  df-plp 9354  df-ltp 9356  df-enr 9426  df-nr 9427  df-c 9491  df-pnf 9623  df-mnf 9624  df-xr 9625  df-ltxr 9626  df-le 9627  df-sub 9808  df-neg 9809  df-nn 10556  df-2 10614  df-3 10615  df-4 10616  df-5 10617  df-6 10618  df-7 10619  df-8 10620  df-9 10621  df-10 10622  df-n0 10816  df-z 10884  df-dec 10998  df-uz 11106  df-fz 11731  df-struct 15061  df-ndx 15062  df-slot 15063  df-base 15064  df-hom 15152  df-cco 15153  df-cat 15512  df-cid 15513  df-func 15701  df-nat 15786  df-fuc 15787  df-catc 15928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator