MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcfuccl Structured version   Unicode version

Theorem catcfuccl 14960
Description: The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcfuccl.c  |-  C  =  (CatCat `  U )
catcfuccl.b  |-  B  =  ( Base `  C
)
catcfuccl.o  |-  Q  =  ( X FuncCat  Y )
catcfuccl.u  |-  ( ph  ->  U  e. WUni )
catcfuccl.1  |-  ( ph  ->  om  e.  U )
catcfuccl.x  |-  ( ph  ->  X  e.  B )
catcfuccl.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
catcfuccl  |-  ( ph  ->  Q  e.  B )

Proof of Theorem catcfuccl
Dummy variables  a 
b  f  g  h  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcfuccl.o . . . . 5  |-  Q  =  ( X FuncCat  Y )
2 eqid 2433 . . . . 5  |-  ( X 
Func  Y )  =  ( X  Func  Y )
3 eqid 2433 . . . . 5  |-  ( X Nat 
Y )  =  ( X Nat  Y )
4 eqid 2433 . . . . 5  |-  ( Base `  X )  =  (
Base `  X )
5 eqid 2433 . . . . 5  |-  (comp `  Y )  =  (comp `  Y )
6 inss2 3559 . . . . . 6  |-  ( U  i^i  Cat )  C_  Cat
7 catcfuccl.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
8 catcfuccl.c . . . . . . . 8  |-  C  =  (CatCat `  U )
9 catcfuccl.b . . . . . . . 8  |-  B  =  ( Base `  C
)
10 catcfuccl.u . . . . . . . 8  |-  ( ph  ->  U  e. WUni )
118, 9, 10catcbas 14948 . . . . . . 7  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
127, 11eleqtrd 2509 . . . . . 6  |-  ( ph  ->  X  e.  ( U  i^i  Cat ) )
136, 12sseldi 3342 . . . . 5  |-  ( ph  ->  X  e.  Cat )
14 catcfuccl.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
1514, 11eleqtrd 2509 . . . . . 6  |-  ( ph  ->  Y  e.  ( U  i^i  Cat ) )
166, 15sseldi 3342 . . . . 5  |-  ( ph  ->  Y  e.  Cat )
17 eqidd 2434 . . . . 5  |-  ( ph  ->  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) )
181, 2, 3, 4, 5, 13, 16, 17fucval 14851 . . . 4  |-  ( ph  ->  Q  =  { <. (
Base `  ndx ) ,  ( X  Func  Y
) >. ,  <. ( Hom  `  ndx ) ,  ( X Nat  Y )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
19 df-base 14162 . . . . . . 7  |-  Base  = Slot  1
20 catcfuccl.1 . . . . . . . 8  |-  ( ph  ->  om  e.  U )
2110, 20wunndx 14173 . . . . . . 7  |-  ( ph  ->  ndx  e.  U )
2219, 10, 21wunstr 14176 . . . . . 6  |-  ( ph  ->  ( Base `  ndx )  e.  U )
23 inss1 3558 . . . . . . . 8  |-  ( U  i^i  Cat )  C_  U
2423, 12sseldi 3342 . . . . . . 7  |-  ( ph  ->  X  e.  U )
2523, 15sseldi 3342 . . . . . . 7  |-  ( ph  ->  Y  e.  U )
2610, 24, 25wunfunc 14792 . . . . . 6  |-  ( ph  ->  ( X  Func  Y
)  e.  U )
2710, 22, 26wunop 8877 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( X  Func  Y ) >.  e.  U
)
28 df-hom 14245 . . . . . . 7  |-  Hom  = Slot ; 1 4
2928, 10, 21wunstr 14176 . . . . . 6  |-  ( ph  ->  ( Hom  `  ndx )  e.  U )
3010, 24, 25wunnat 14849 . . . . . 6  |-  ( ph  ->  ( X Nat  Y )  e.  U )
3110, 29, 30wunop 8877 . . . . 5  |-  ( ph  -> 
<. ( Hom  `  ndx ) ,  ( X Nat  Y ) >.  e.  U
)
32 df-cco 14246 . . . . . . 7  |- comp  = Slot ; 1 5
3332, 10, 21wunstr 14176 . . . . . 6  |-  ( ph  ->  (comp `  ndx )  e.  U )
3410, 26, 26wunxp 8879 . . . . . . . 8  |-  ( ph  ->  ( ( X  Func  Y )  X.  ( X 
Func  Y ) )  e.  U )
3510, 34, 26wunxp 8879 . . . . . . 7  |-  ( ph  ->  ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) )  e.  U
)
3632, 10, 25wunstr 14176 . . . . . . . . . . . . . 14  |-  ( ph  ->  (comp `  Y )  e.  U )
3710, 36wunrn 8884 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  (comp `  Y
)  e.  U )
3810, 37wununi 8861 . . . . . . . . . . . 12  |-  ( ph  ->  U. ran  (comp `  Y )  e.  U
)
3910, 38wunrn 8884 . . . . . . . . . . 11  |-  ( ph  ->  ran  U. ran  (comp `  Y )  e.  U
)
4010, 39wununi 8861 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  (comp `  Y )  e.  U )
4110, 40wunpw 8862 . . . . . . . . 9  |-  ( ph  ->  ~P U. ran  U. ran  (comp `  Y )  e.  U )
4219, 10, 24wunstr 14176 . . . . . . . . 9  |-  ( ph  ->  ( Base `  X
)  e.  U )
4310, 41, 42wunmap 8881 . . . . . . . 8  |-  ( ph  ->  ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  e.  U
)
4410, 30wunrn 8884 . . . . . . . . . 10  |-  ( ph  ->  ran  ( X Nat  Y
)  e.  U )
4510, 44wununi 8861 . . . . . . . . 9  |-  ( ph  ->  U. ran  ( X Nat 
Y )  e.  U
)
4610, 45, 45wunxp 8879 . . . . . . . 8  |-  ( ph  ->  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat  Y ) )  e.  U )
4710, 43, 46wunpm 8880 . . . . . . 7  |-  ( ph  ->  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) ) 
^pm  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat 
Y ) ) )  e.  U )
48 fvex 5689 . . . . . . . . . . 11  |-  ( 1st `  v )  e.  _V
49 fvex 5689 . . . . . . . . . . . . . 14  |-  ( 2nd `  v )  e.  _V
50 ovex 6105 . . . . . . . . . . . . . . . . 17  |-  ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  e.  _V
51 ovex 6105 . . . . . . . . . . . . . . . . . . . 20  |-  ( X Nat 
Y )  e.  _V
5251rnex 6501 . . . . . . . . . . . . . . . . . . 19  |-  ran  ( X Nat  Y )  e.  _V
5352uniex 6365 . . . . . . . . . . . . . . . . . 18  |-  U. ran  ( X Nat  Y )  e.  _V
5453, 53xpex 6497 . . . . . . . . . . . . . . . . 17  |-  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat  Y ) )  e. 
_V
55 eqid 2433 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )  =  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )
56 ovssunirn 6106 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  C_  U.
ran  ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )
57 ovssunirn 6106 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )  C_  U. ran  (comp `  Y )
58 rnss 5055 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )  C_  U. ran  (comp `  Y )  ->  ran  ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
)  C_  ran  U. ran  (comp `  Y ) )
59 uniss 4100 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ran  ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
)  C_  ran  U. ran  (comp `  Y )  ->  U. ran  ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) )  C_  U. ran  U.
ran  (comp `  Y )
)
6057, 58, 59mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  U. ran  ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
)  C_  U. ran  U. ran  (comp `  Y )
6156, 60sstri 3353 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  C_  U.
ran  U. ran  (comp `  Y )
62 ovex 6105 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  e. 
_V
6362elpw 3854 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( b `  x
) ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) )  e.  ~P U. ran  U.
ran  (comp `  Y )  <->  ( ( b `  x
) ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) 
C_  U. ran  U. ran  (comp `  Y ) )
6461, 63mpbir 209 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  e. 
~P U. ran  U. ran  (comp `  Y )
6564a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( Base `  X
)  ->  ( (
b `  x )
( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) )  e. 
~P U. ran  U. ran  (comp `  Y ) )
6655, 65fmpti 5854 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) : ( Base `  X ) --> ~P U. ran  U. ran  (comp `  Y )
67 fvex 5689 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  (comp `  Y )  e.  _V
6867rnex 6501 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ran  (comp `  Y )  e.  _V
6968uniex 6365 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  U. ran  (comp `  Y )  e. 
_V
7069rnex 6501 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ran  U. ran  (comp `  Y )  e.  _V
7170uniex 6365 . . . . . . . . . . . . . . . . . . . . . 22  |-  U. ran  U.
ran  (comp `  Y )  e.  _V
7271pwex 4463 . . . . . . . . . . . . . . . . . . . . 21  |-  ~P U. ran  U. ran  (comp `  Y )  e.  _V
73 fvex 5689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  X )  e.  _V
7472, 73elmap 7229 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) )  e.  ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  <-> 
( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) : ( Base `  X ) --> ~P U. ran  U. ran  (comp `  Y ) )
7566, 74mpbir 209 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )  e.  ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )
7675rgen2w 2774 . . . . . . . . . . . . . . . . . 18  |-  A. b  e.  ( g ( X Nat 
Y ) h ) A. a  e.  ( f ( X Nat  Y
) g ) ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) )  e.  ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )
77 eqid 2433 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat 
Y ) g ) 
|->  ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )
7877fmpt2 6630 . . . . . . . . . . . . . . . . . 18  |-  ( A. b  e.  ( g
( X Nat  Y ) h ) A. a  e.  ( f ( X Nat 
Y ) g ) ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )  e.  ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  <-> 
( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) : ( ( g ( X Nat 
Y ) h )  X.  ( f ( X Nat  Y ) g ) ) --> ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) ) )
7976, 78mpbi 208 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat 
Y ) g ) 
|->  ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) : ( ( g ( X Nat 
Y ) h )  X.  ( f ( X Nat  Y ) g ) ) --> ( ~P
U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )
80 ovssunirn 6106 . . . . . . . . . . . . . . . . . 18  |-  ( g ( X Nat  Y ) h )  C_  U. ran  ( X Nat  Y )
81 ovssunirn 6106 . . . . . . . . . . . . . . . . . 18  |-  ( f ( X Nat  Y ) g )  C_  U. ran  ( X Nat  Y )
82 xpss12 4932 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( g ( X Nat 
Y ) h ) 
C_  U. ran  ( X Nat 
Y )  /\  (
f ( X Nat  Y
) g )  C_  U.
ran  ( X Nat  Y
) )  ->  (
( g ( X Nat 
Y ) h )  X.  ( f ( X Nat  Y ) g ) )  C_  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
8380, 81, 82mp2an 665 . . . . . . . . . . . . . . . . 17  |-  ( ( g ( X Nat  Y
) h )  X.  ( f ( X Nat 
Y ) g ) )  C_  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat  Y ) )
84 elpm2r 7218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  e.  _V  /\  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
)  e.  _V )  /\  ( ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) : ( ( g ( X Nat  Y
) h )  X.  ( f ( X Nat 
Y ) g ) ) --> ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X ) )  /\  ( ( g ( X Nat  Y ) h )  X.  (
f ( X Nat  Y
) g ) ) 
C_  ( U. ran  ( X Nat  Y )  X.  U. ran  ( X Nat 
Y ) ) ) )  ->  ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
8550, 54, 79, 83, 84mp4an 666 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( g ( X Nat  Y ) h ) ,  a  e.  ( f ( X Nat 
Y ) g ) 
|->  ( x  e.  (
Base `  X )  |->  ( ( b `  x ) ( <.
( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
8685sbcth 3189 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  v )  e.  _V  ->  [. ( 2nd `  v )  / 
g ]. ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
87 sbcel1g 3669 . . . . . . . . . . . . . . 15  |-  ( ( 2nd `  v )  e.  _V  ->  ( [. ( 2nd `  v
)  /  g ]. ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )  <->  [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) ) )
8886, 87mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  v )  e.  _V  ->  [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
8949, 88ax-mp 5 . . . . . . . . . . . . 13  |-  [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( X Nat 
Y ) h ) ,  a  e.  ( f ( X Nat  Y
) g )  |->  ( x  e.  ( Base `  X )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  Y )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  e.  ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
9089sbcth 3189 . . . . . . . . . . . 12  |-  ( ( 1st `  v )  e.  _V  ->  [. ( 1st `  v )  / 
f ]. [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
91 sbcel1g 3669 . . . . . . . . . . . 12  |-  ( ( 1st `  v )  e.  _V  ->  ( [. ( 1st `  v
)  /  f ]. [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )  <->  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) ) )
9290, 91mpbid 210 . . . . . . . . . . 11  |-  ( ( 1st `  v )  e.  _V  ->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
9348, 92ax-mp 5 . . . . . . . . . 10  |-  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
9493rgen2w 2774 . . . . . . . . 9  |-  A. v  e.  ( ( X  Func  Y )  X.  ( X 
Func  Y ) ) A. h  e.  ( X  Func  Y ) [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
95 eqid 2433 . . . . . . . . . 10  |-  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
9695fmpt2 6630 . . . . . . . . 9  |-  ( A. v  e.  ( ( X  Func  Y )  X.  ( X  Func  Y
) ) A. h  e.  ( X  Func  Y
) [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  e.  ( ( ~P U. ran  U.
ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )  <->  ( v  e.  ( ( X  Func  Y )  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) : ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) ) --> ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
9794, 96mpbi 208 . . . . . . . 8  |-  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) : ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) ) --> ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) )
9897a1i 11 . . . . . . 7  |-  ( ph  ->  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) : ( ( ( X 
Func  Y )  X.  ( X  Func  Y ) )  X.  ( X  Func  Y ) ) --> ( ( ~P U. ran  U. ran  (comp `  Y )  ^m  ( Base `  X
) )  ^pm  ( U. ran  ( X Nat  Y
)  X.  U. ran  ( X Nat  Y )
) ) )
9910, 35, 47, 98wunf 8882 . . . . . 6  |-  ( ph  ->  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  e.  U )
10010, 33, 99wunop 8877 . . . . 5  |-  ( ph  -> 
<. (comp `  ndx ) ,  ( v  e.  ( ( X  Func  Y
)  X.  ( X 
Func  Y ) ) ,  h  e.  ( X 
Func  Y )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >.  e.  U )
10110, 27, 31, 100wuntp 8866 . . . 4  |-  ( ph  ->  { <. ( Base `  ndx ) ,  ( X  Func  Y ) >. ,  <. ( Hom  `  ndx ) ,  ( X Nat  Y )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( X 
Func  Y )  X.  ( X  Func  Y ) ) ,  h  e.  ( X  Func  Y )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( X Nat  Y
) h ) ,  a  e.  ( f ( X Nat  Y ) g )  |->  ( x  e.  ( Base `  X
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  Y
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. }  e.  U )
10218, 101eqeltrd 2507 . . 3  |-  ( ph  ->  Q  e.  U )
1031, 13, 16fuccat 14863 . . 3  |-  ( ph  ->  Q  e.  Cat )
104102, 103elind 3528 . 2  |-  ( ph  ->  Q  e.  ( U  i^i  Cat ) )
105104, 11eleqtrrd 2510 1  |-  ( ph  ->  Q  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962   [.wsbc 3175   [_csb 3276    i^i cin 3315    C_ wss 3316   ~Pcpw 3848   {ctp 3869   <.cop 3871   U.cuni 4079    e. cmpt 4338    X. cxp 4825   ran crn 4828   -->wf 5402   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   omcom 6465   1stc1st 6564   2ndc2nd 6565    ^m cmap 7202    ^pm cpm 7203  WUnicwun 8855   1c1 9271   4c4 10361   5c5 10362  ;cdc 10743   ndxcnx 14154   Basecbs 14157   Hom chom 14232  compcco 14233   Catccat 14585    Func cfunc 14747   Nat cnat 14834   FuncCat cfuc 14835  CatCatccatc 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-wun 8857  df-ni 9029  df-pli 9030  df-mi 9031  df-lti 9032  df-plpq 9065  df-mpq 9066  df-ltpq 9067  df-enq 9068  df-nq 9069  df-erq 9070  df-plq 9071  df-mq 9072  df-1nq 9073  df-rq 9074  df-ltnq 9075  df-np 9138  df-plp 9140  df-ltp 9142  df-enr 9214  df-nr 9215  df-c 9276  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-hom 14245  df-cco 14246  df-cat 14589  df-cid 14590  df-func 14751  df-nat 14836  df-fuc 14837  df-catc 14946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator