MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcco Structured version   Unicode version

Theorem catcco 15303
Description: Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcbas.c  |-  C  =  (CatCat `  U )
catcbas.b  |-  B  =  ( Base `  C
)
catcbas.u  |-  ( ph  ->  U  e.  V )
catcco.o  |-  .x.  =  (comp `  C )
catcco.x  |-  ( ph  ->  X  e.  B )
catcco.y  |-  ( ph  ->  Y  e.  B )
catcco.z  |-  ( ph  ->  Z  e.  B )
catcco.f  |-  ( ph  ->  F  e.  ( X 
Func  Y ) )
catcco.g  |-  ( ph  ->  G  e.  ( Y 
Func  Z ) )
Assertion
Ref Expression
catcco  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  =  ( G  o.func  F ) )

Proof of Theorem catcco
Dummy variables  v 
z  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcbas.c . . . 4  |-  C  =  (CatCat `  U )
2 catcbas.b . . . 4  |-  B  =  ( Base `  C
)
3 catcbas.u . . . 4  |-  ( ph  ->  U  e.  V )
4 catcco.o . . . 4  |-  .x.  =  (comp `  C )
51, 2, 3, 4catccofval 15302 . . 3  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v )  Func  z
) ,  f  e.  (  Func  `  v ) 
|->  ( g  o.func  f )
) ) )
6 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  v  =  <. X ,  Y >. )
76fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  v )  =  ( 2nd `  <. X ,  Y >. )
)
8 catcco.x . . . . . . . 8  |-  ( ph  ->  X  e.  B )
9 catcco.y . . . . . . . 8  |-  ( ph  ->  Y  e.  B )
10 op2ndg 6808 . . . . . . . 8  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
118, 9, 10syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
1211adantr 465 . . . . . 6  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
137, 12eqtrd 2508 . . . . 5  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  ( 2nd `  v )  =  Y )
14 simprr 756 . . . . 5  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  z  =  Z )
1513, 14oveq12d 6313 . . . 4  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
( 2nd `  v
)  Func  z )  =  ( Y  Func  Z ) )
166fveq2d 5876 . . . . 5  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (  Func  `  v )  =  (  Func  `  <. X ,  Y >. ) )
17 df-ov 6298 . . . . 5  |-  ( X 
Func  Y )  =  ( 
Func  `  <. X ,  Y >. )
1816, 17syl6eqr 2526 . . . 4  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (  Func  `  v )  =  ( X  Func  Y
) )
19 eqidd 2468 . . . 4  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
g  o.func  f )  =  ( g  o.func  f ) )
2015, 18, 19mpt2eq123dv 6354 . . 3  |-  ( (
ph  /\  ( v  =  <. X ,  Y >.  /\  z  =  Z ) )  ->  (
g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) )  =  ( g  e.  ( Y  Func  Z ) ,  f  e.  ( X  Func  Y )  |->  ( g  o.func  f ) ) )
21 opelxpi 5037 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
228, 9, 21syl2anc 661 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
23 catcco.z . . 3  |-  ( ph  ->  Z  e.  B )
24 ovex 6320 . . . . 5  |-  ( Y 
Func  Z )  e.  _V
25 ovex 6320 . . . . 5  |-  ( X 
Func  Y )  e.  _V
2624, 25mpt2ex 6872 . . . 4  |-  ( g  e.  ( Y  Func  Z ) ,  f  e.  ( X  Func  Y
)  |->  ( g  o.func  f ) )  e.  _V
2726a1i 11 . . 3  |-  ( ph  ->  ( g  e.  ( Y  Func  Z ) ,  f  e.  ( X  Func  Y )  |->  ( g  o.func  f ) )  e. 
_V )
285, 20, 22, 23, 27ovmpt2d 6425 . 2  |-  ( ph  ->  ( <. X ,  Y >.  .x.  Z )  =  ( g  e.  ( Y  Func  Z ) ,  f  e.  ( X  Func  Y )  |->  ( g  o.func  f ) ) )
29 oveq12 6304 . . 3  |-  ( ( g  =  G  /\  f  =  F )  ->  ( g  o.func  f )  =  ( G  o.func  F ) )
3029adantl 466 . 2  |-  ( (
ph  /\  ( g  =  G  /\  f  =  F ) )  -> 
( g  o.func  f )  =  ( G  o.func  F ) )
31 catcco.g . 2  |-  ( ph  ->  G  e.  ( Y 
Func  Z ) )
32 catcco.f . 2  |-  ( ph  ->  F  e.  ( X 
Func  Y ) )
33 ovex 6320 . . 3  |-  ( G  o.func 
F )  e.  _V
3433a1i 11 . 2  |-  ( ph  ->  ( G  o.func  F )  e.  _V )
3528, 30, 31, 32, 34ovmpt2d 6425 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  =  ( G  o.func  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   <.cop 4039    X. cxp 5003   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   2ndc2nd 6794   Basecbs 14507  compcco 14584    Func cfunc 15098    o.func ccofu 15100  CatCatccatc 15296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-hom 14596  df-cco 14597  df-catc 15297
This theorem is referenced by:  catccatid  15304  resscatc  15307  catcisolem  15308  catciso  15309
  Copyright terms: Public domain W3C validator