MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduniima Structured version   Unicode version

Theorem carduniima 8468
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
carduniima  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )

Proof of Theorem carduniima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ffun 5715 . . . . 5  |-  ( F : A --> ( om  u.  ran  aleph )  ->  Fun  F )
2 funimaexg 5647 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
31, 2sylan 469 . . . 4  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
43expcom 433 . . 3  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( F " A
)  e.  _V )
)
5 ffn 5713 . . . . . . . . 9  |-  ( F : A --> ( om  u.  ran  aleph )  ->  F  Fn  A )
6 fnima 5681 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
75, 6syl 16 . . . . . . . 8  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( F " A
)  =  ran  F
)
8 frn 5719 . . . . . . . 8  |-  ( F : A --> ( om  u.  ran  aleph )  ->  ran  F  C_  ( om  u.  ran  aleph ) )
97, 8eqsstrd 3523 . . . . . . 7  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( F " A
)  C_  ( om  u.  ran  aleph ) )
109sseld 3488 . . . . . 6  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  ( F " A )  ->  x  e.  ( om  u.  ran  aleph ) ) )
11 iscard3 8465 . . . . . 6  |-  ( (
card `  x )  =  x  <->  x  e.  ( om  u.  ran  aleph ) )
1210, 11syl6ibr 227 . . . . 5  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  ( F " A )  ->  ( card `  x
)  =  x ) )
1312ralrimiv 2866 . . . 4  |-  ( F : A --> ( om  u.  ran  aleph )  ->  A. x  e.  ( F " A ) (
card `  x )  =  x )
14 carduni 8353 . . . 4  |-  ( ( F " A )  e.  _V  ->  ( A. x  e.  ( F " A ) (
card `  x )  =  x  ->  ( card `  U. ( F " A ) )  = 
U. ( F " A ) ) )
1513, 14syl5 32 . . 3  |-  ( ( F " A )  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
164, 15syli 37 . 2  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
17 iscard3 8465 . 2  |-  ( (
card `  U. ( F
" A ) )  =  U. ( F
" A )  <->  U. ( F " A )  e.  ( om  u.  ran  aleph
) )
1816, 17syl6ib 226 1  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    u. cun 3459   U.cuni 4235   ran crn 4989   "cima 4991   Fun wfun 5564    Fn wfn 5565   -->wf 5566   ` cfv 5570   omcom 6673   cardccrd 8307   alephcale 8308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-har 7976  df-card 8311  df-aleph 8312
This theorem is referenced by:  cardinfima  8469
  Copyright terms: Public domain W3C validator