MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduni Unicode version

Theorem carduni 7498
Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of [Monk1] p. 133. (Contributed by Mario Carneiro, 20-Jan-2013.)
Assertion
Ref Expression
carduni  |-  ( A  e.  V  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( card `  U. A )  = 
U. A ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem carduni
StepHypRef Expression
1 fveq2 5377 . . . . . . . . . 10  |-  ( x  =  y  ->  ( card `  x )  =  ( card `  y
) )
2 id 21 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
31, 2eqeq12d 2267 . . . . . . . . 9  |-  ( x  =  y  ->  (
( card `  x )  =  x  <->  ( card `  y
)  =  y ) )
43rcla4v 2817 . . . . . . . 8  |-  ( y  e.  A  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( card `  y )  =  y ) )
5 cardon 7461 . . . . . . . . 9  |-  ( card `  y )  e.  On
6 eleq1 2313 . . . . . . . . 9  |-  ( (
card `  y )  =  y  ->  ( (
card `  y )  e.  On  <->  y  e.  On ) )
75, 6mpbii 204 . . . . . . . 8  |-  ( (
card `  y )  =  y  ->  y  e.  On )
84, 7syl6com 33 . . . . . . 7  |-  ( A. x  e.  A  ( card `  x )  =  x  ->  ( y  e.  A  ->  y  e.  On ) )
98ssrdv 3106 . . . . . 6  |-  ( A. x  e.  A  ( card `  x )  =  x  ->  A  C_  On )
10 ssonuni 4469 . . . . . 6  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
119, 10syl5 30 . . . . 5  |-  ( A  e.  V  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  U. A  e.  On ) )
1211imp 420 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  U. A  e.  On )
13 cardonle 7474 . . . 4  |-  ( U. A  e.  On  ->  (
card `  U. A ) 
C_  U. A )
1412, 13syl 17 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  ( card `  U. A ) 
C_  U. A )
15 cardon 7461 . . . . 5  |-  ( card `  U. A )  e.  On
1615onirri 4390 . . . 4  |-  -.  ( card `  U. A )  e.  ( card `  U. A )
17 eluni 3730 . . . . . . . 8  |-  ( (
card `  U. A )  e.  U. A  <->  E. y
( ( card `  U. A )  e.  y  /\  y  e.  A
) )
18 elssuni 3753 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  y  C_ 
U. A )
19 ssdomg 6793 . . . . . . . . . . . . . . . . . . 19  |-  ( U. A  e.  On  ->  ( y  C_  U. A  -> 
y  ~<_  U. A ) )
2019adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  C_  U. A  ->  y  ~<_  U. A
) )
2118, 20syl5 30 . . . . . . . . . . . . . . . . 17  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  y  ~<_  U. A
) )
22 id 21 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  y )  =  y  ->  ( card `  y )  =  y )
23 onenon 7466 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  y )  e.  On  ->  ( card `  y )  e.  dom  card )
245, 23ax-mp 10 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  y )  e.  dom  card
2522, 24syl6eqelr 2342 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  y )  =  y  ->  y  e. 
dom  card )
26 onenon 7466 . . . . . . . . . . . . . . . . . 18  |-  ( U. A  e.  On  ->  U. A  e.  dom  card )
27 carddom2 7494 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  dom  card  /\ 
U. A  e.  dom  card )  ->  ( ( card `  y )  C_  ( card `  U. A )  <-> 
y  ~<_  U. A ) )
2825, 26, 27syl2an 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( ( card `  y )  C_  ( card `  U. A )  <-> 
y  ~<_  U. A ) )
2921, 28sylibrd 227 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  ( card `  y )  C_  ( card `  U. A ) ) )
30 sseq1 3120 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  y )  =  y  ->  ( (
card `  y )  C_  ( card `  U. A )  <->  y  C_  ( card `  U. A ) ) )
3130adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( ( card `  y )  C_  ( card `  U. A )  <-> 
y  C_  ( card ` 
U. A ) ) )
3229, 31sylibd 207 . . . . . . . . . . . . . . 15  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  y  C_  ( card `  U. A ) ) )
33 ssel 3097 . . . . . . . . . . . . . . 15  |-  ( y 
C_  ( card `  U. A )  ->  (
( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  ( card `  U. A ) ) )
3432, 33syl6 31 . . . . . . . . . . . . . 14  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  ( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  ( card `  U. A ) ) ) )
3534ex 425 . . . . . . . . . . . . 13  |-  ( (
card `  y )  =  y  ->  ( U. A  e.  On  ->  ( y  e.  A  -> 
( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  (
card `  U. A ) ) ) ) )
3635com3r 75 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (
( card `  y )  =  y  ->  ( U. A  e.  On  ->  ( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  (
card `  U. A ) ) ) ) )
374, 36syld 42 . . . . . . . . . . 11  |-  ( y  e.  A  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( U. A  e.  On  ->  ( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  (
card `  U. A ) ) ) ) )
3837com4r 82 . . . . . . . . . 10  |-  ( (
card `  U. A )  e.  y  ->  (
y  e.  A  -> 
( A. x  e.  A  ( card `  x
)  =  x  -> 
( U. A  e.  On  ->  ( card ` 
U. A )  e.  ( card `  U. A ) ) ) ) )
3938imp 420 . . . . . . . . 9  |-  ( ( ( card `  U. A )  e.  y  /\  y  e.  A
)  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( U. A  e.  On  ->  (
card `  U. A )  e.  ( card `  U. A ) ) ) )
4039exlimiv 2023 . . . . . . . 8  |-  ( E. y ( ( card `  U. A )  e.  y  /\  y  e.  A )  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( U. A  e.  On  ->  (
card `  U. A )  e.  ( card `  U. A ) ) ) )
4117, 40sylbi 189 . . . . . . 7  |-  ( (
card `  U. A )  e.  U. A  -> 
( A. x  e.  A  ( card `  x
)  =  x  -> 
( U. A  e.  On  ->  ( card ` 
U. A )  e.  ( card `  U. A ) ) ) )
4241com13 76 . . . . . 6  |-  ( U. A  e.  On  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( (
card `  U. A )  e.  U. A  -> 
( card `  U. A )  e.  ( card `  U. A ) ) ) )
4342imp 420 . . . . 5  |-  ( ( U. A  e.  On  /\ 
A. x  e.  A  ( card `  x )  =  x )  ->  (
( card `  U. A )  e.  U. A  -> 
( card `  U. A )  e.  ( card `  U. A ) ) )
4412, 43sylancom 651 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  (
( card `  U. A )  e.  U. A  -> 
( card `  U. A )  e.  ( card `  U. A ) ) )
4516, 44mtoi 171 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  -.  ( card `  U. A )  e.  U. A )
4615onordi 4388 . . . 4  |-  Ord  ( card `  U. A )
47 eloni 4295 . . . . 5  |-  ( U. A  e.  On  ->  Ord  U. A )
4812, 47syl 17 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  Ord  U. A )
49 ordtri4 4322 . . . 4  |-  ( ( Ord  ( card `  U. A )  /\  Ord  U. A )  ->  (
( card `  U. A )  =  U. A  <->  ( ( card `  U. A ) 
C_  U. A  /\  -.  ( card `  U. A )  e.  U. A ) ) )
5046, 48, 49sylancr 647 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  (
( card `  U. A )  =  U. A  <->  ( ( card `  U. A ) 
C_  U. A  /\  -.  ( card `  U. A )  e.  U. A ) ) )
5114, 45, 50mpbir2and 893 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  ( card `  U. A )  =  U. A )
5251ex 425 1  |-  ( A  e.  V  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( card `  U. A )  = 
U. A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   A.wral 2509    C_ wss 3078   U.cuni 3727   class class class wbr 3920   Ord word 4284   Oncon0 4285   dom cdm 4580   ` cfv 4592    ~<_ cdom 6747   cardccrd 7452
This theorem is referenced by:  cardiun  7499  carduniima  7607
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-card 7456
  Copyright terms: Public domain W3C validator