MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomelir Structured version   Unicode version

Theorem cardsdomelir 8366
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 8367 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
cardsdomelir  |-  ( A  e.  ( card `  B
)  ->  A  ~<  B )

Proof of Theorem cardsdomelir
StepHypRef Expression
1 cardon 8337 . . . 4  |-  ( card `  B )  e.  On
21onelssi 4992 . . . 4  |-  ( A  e.  ( card `  B
)  ->  A  C_  ( card `  B ) )
3 ssdomg 7573 . . . 4  |-  ( (
card `  B )  e.  On  ->  ( A  C_  ( card `  B
)  ->  A  ~<_  ( card `  B ) ) )
41, 2, 3mpsyl 63 . . 3  |-  ( A  e.  ( card `  B
)  ->  A  ~<_  ( card `  B ) )
5 elfvdm 5898 . . . 4  |-  ( A  e.  ( card `  B
)  ->  B  e.  dom  card )
6 cardid2 8346 . . . 4  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
75, 6syl 16 . . 3  |-  ( A  e.  ( card `  B
)  ->  ( card `  B )  ~~  B
)
8 domentr 7586 . . 3  |-  ( ( A  ~<_  ( card `  B
)  /\  ( card `  B )  ~~  B
)  ->  A  ~<_  B )
94, 7, 8syl2anc 661 . 2  |-  ( A  e.  ( card `  B
)  ->  A  ~<_  B )
10 cardne 8358 . 2  |-  ( A  e.  ( card `  B
)  ->  -.  A  ~~  B )
11 brsdom 7550 . 2  |-  ( A 
~<  B  <->  ( A  ~<_  B  /\  -.  A  ~~  B ) )
129, 10, 11sylanbrc 664 1  |-  ( A  e.  ( card `  B
)  ->  A  ~<  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1767    C_ wss 3481   class class class wbr 4453   Oncon0 4884   dom cdm 5005   ` cfv 5594    ~~ cen 7525    ~<_ cdom 7526    ~< csdm 7527   cardccrd 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-en 7529  df-dom 7530  df-sdom 7531  df-card 8332
This theorem is referenced by:  cardsdomel  8367  pwsdompw  8596  alephval2  8959  pwcfsdom  8970  tskcard  9171
  Copyright terms: Public domain W3C validator