MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdom2 Structured version   Unicode version

Theorem cardsdom2 8367
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cardsdom2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  e.  (
card `  B )  <->  A 
~<  B ) )

Proof of Theorem cardsdom2
StepHypRef Expression
1 carddom2 8356 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )
2 carden2 8366 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  =  (
card `  B )  <->  A 
~~  B ) )
32necon3abid 2631 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  =/=  ( card `  B )  <->  -.  A  ~~  B ) )
41, 3anbi12d 715 . 2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( (
card `  A )  C_  ( card `  B
)  /\  ( card `  A )  =/=  ( card `  B ) )  <-> 
( A  ~<_  B  /\  -.  A  ~~  B ) ) )
5 cardon 8323 . . 3  |-  ( card `  A )  e.  On
6 cardon 8323 . . 3  |-  ( card `  B )  e.  On
7 onelpss 5418 . . 3  |-  ( ( ( card `  A
)  e.  On  /\  ( card `  B )  e.  On )  ->  (
( card `  A )  e.  ( card `  B
)  <->  ( ( card `  A )  C_  ( card `  B )  /\  ( card `  A )  =/=  ( card `  B
) ) ) )
85, 6, 7mp2an 676 . 2  |-  ( (
card `  A )  e.  ( card `  B
)  <->  ( ( card `  A )  C_  ( card `  B )  /\  ( card `  A )  =/=  ( card `  B
) ) )
9 brsdom 7539 . 2  |-  ( A 
~<  B  <->  ( A  ~<_  B  /\  -.  A  ~~  B ) )
104, 8, 93bitr4g 291 1  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  e.  (
card `  B )  <->  A 
~<  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1872    =/= wne 2593    C_ wss 3372   class class class wbr 4359   dom cdm 4789   Oncon0 5378   ` cfv 5537    ~~ cen 7514    ~<_ cdom 7515    ~< csdm 7516   cardccrd 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-ral 2713  df-rex 2714  df-rab 2717  df-v 3018  df-sbc 3236  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-int 4192  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-ord 5381  df-on 5382  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-er 7311  df-en 7518  df-dom 7519  df-sdom 7520  df-card 8318
This theorem is referenced by:  domtri2  8368  nnsdomel  8369  indcardi  8416  sdom2en01  8676  cardsdom  8924  smobeth  8955  hargch  9042
  Copyright terms: Public domain W3C validator