MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin2 Structured version   Unicode version

Theorem cardmin2 8164
Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardmin2  |-  ( E. x  e.  On  A  ~<  x  <->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Distinct variable group:    x, A

Proof of Theorem cardmin2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 onintrab2 6412 . . . 4  |-  ( E. x  e.  On  A  ~<  x  <->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
21biimpi 194 . . 3  |-  ( E. x  e.  On  A  ~<  x  ->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
32adantr 462 . . . . . 6  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
4 eloni 4725 . . . . . . . 8  |-  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  ->  Ord  |^| { x  e.  On  |  A  ~<  x } )
5 ordelss 4731 . . . . . . . 8  |-  ( ( Ord  |^| { x  e.  On  |  A  ~<  x }  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  C_  |^|
{ x  e.  On  |  A  ~<  x }
)
64, 5sylan 468 . . . . . . 7  |-  ( (
|^| { x  e.  On  |  A  ~<  x }  e.  On  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  C_  |^|
{ x  e.  On  |  A  ~<  x }
)
71, 6sylanb 469 . . . . . 6  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  C_ 
|^| { x  e.  On  |  A  ~<  x }
)
8 ssdomg 7351 . . . . . 6  |-  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  ->  ( y  C_  |^|
{ x  e.  On  |  A  ~<  x }  ->  y  ~<_  |^| { x  e.  On  |  A  ~<  x } ) )
93, 7, 8sylc 60 . . . . 5  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  ~<_  |^|
{ x  e.  On  |  A  ~<  x }
)
10 onelon 4740 . . . . . . . 8  |-  ( (
|^| { x  e.  On  |  A  ~<  x }  e.  On  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  e.  On )
111, 10sylanb 469 . . . . . . 7  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  e.  On )
12 nfcv 2577 . . . . . . . . . . . . . 14  |-  F/_ x A
13 nfcv 2577 . . . . . . . . . . . . . 14  |-  F/_ x  ~<
14 nfrab1 2899 . . . . . . . . . . . . . . 15  |-  F/_ x { x  e.  On  |  A  ~<  x }
1514nfint 4135 . . . . . . . . . . . . . 14  |-  F/_ x |^| { x  e.  On  |  A  ~<  x }
1612, 13, 15nfbr 4333 . . . . . . . . . . . . 13  |-  F/ x  A  ~<  |^| { x  e.  On  |  A  ~<  x }
17 breq2 4293 . . . . . . . . . . . . 13  |-  ( x  =  |^| { x  e.  On  |  A  ~<  x }  ->  ( A  ~<  x  <->  A  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
1816, 17onminsb 6409 . . . . . . . . . . . 12  |-  ( E. x  e.  On  A  ~<  x  ->  A  ~<  |^|
{ x  e.  On  |  A  ~<  x }
)
19 sdomentr 7441 . . . . . . . . . . . 12  |-  ( ( A  ~<  |^| { x  e.  On  |  A  ~<  x }  /\  |^| { x  e.  On  |  A  ~<  x }  ~~  y )  ->  A  ~<  y
)
2018, 19sylan 468 . . . . . . . . . . 11  |-  ( ( E. x  e.  On  A  ~<  x  /\  |^| { x  e.  On  |  A  ~<  x }  ~~  y )  ->  A  ~<  y )
21 breq2 4293 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( A  ~<  x  <->  A  ~<  y ) )
2221elrab 3114 . . . . . . . . . . . . 13  |-  ( y  e.  { x  e.  On  |  A  ~<  x }  <->  ( y  e.  On  /\  A  ~<  y ) )
23 ssrab2 3434 . . . . . . . . . . . . . 14  |-  { x  e.  On  |  A  ~<  x }  C_  On
24 onnmin 6413 . . . . . . . . . . . . . 14  |-  ( ( { x  e.  On  |  A  ~<  x }  C_  On  /\  y  e. 
{ x  e.  On  |  A  ~<  x }
)  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } )
2523, 24mpan 665 . . . . . . . . . . . . 13  |-  ( y  e.  { x  e.  On  |  A  ~<  x }  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } )
2622, 25sylbir 213 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  A  ~<  y )  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } )
2726expcom 435 . . . . . . . . . . 11  |-  ( A 
~<  y  ->  ( y  e.  On  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } ) )
2820, 27syl 16 . . . . . . . . . 10  |-  ( ( E. x  e.  On  A  ~<  x  /\  |^| { x  e.  On  |  A  ~<  x }  ~~  y )  ->  (
y  e.  On  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } ) )
2928impancom 438 . . . . . . . . 9  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  On )  ->  ( |^| { x  e.  On  |  A  ~<  x }  ~~  y  ->  -.  y  e.  |^| { x  e.  On  |  A  ~<  x } ) )
3029con2d 115 . . . . . . . 8  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  On )  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  -.  |^| { x  e.  On  |  A  ~<  x }  ~~  y ) )
3130impancom 438 . . . . . . 7  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  (
y  e.  On  ->  -. 
|^| { x  e.  On  |  A  ~<  x }  ~~  y ) )
3211, 31mpd 15 . . . . . 6  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  -.  |^|
{ x  e.  On  |  A  ~<  x }  ~~  y )
33 ensym 7354 . . . . . 6  |-  ( y 
~~  |^| { x  e.  On  |  A  ~<  x }  ->  |^| { x  e.  On  |  A  ~<  x }  ~~  y )
3432, 33nsyl 121 . . . . 5  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  -.  y  ~~  |^| { x  e.  On  |  A  ~<  x } )
35 brsdom 7328 . . . . 5  |-  ( y 
~<  |^| { x  e.  On  |  A  ~<  x }  <->  ( y  ~<_  |^|
{ x  e.  On  |  A  ~<  x }  /\  -.  y  ~~  |^| { x  e.  On  |  A  ~<  x } ) )
369, 34, 35sylanbrc 659 . . . 4  |-  ( ( E. x  e.  On  A  ~<  x  /\  y  e.  |^| { x  e.  On  |  A  ~<  x } )  ->  y  ~<  |^| { x  e.  On  |  A  ~<  x } )
3736ralrimiva 2797 . . 3  |-  ( E. x  e.  On  A  ~<  x  ->  A. y  e.  |^| { x  e.  On  |  A  ~<  x } y  ~<  |^| { x  e.  On  |  A  ~<  x } )
38 iscard 8141 . . 3  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  <->  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  /\  A. y  e. 
|^| { x  e.  On  |  A  ~<  x }
y  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
392, 37, 38sylanbrc 659 . 2  |-  ( E. x  e.  On  A  ~<  x  ->  ( card ` 
|^| { x  e.  On  |  A  ~<  x }
)  =  |^| { x  e.  On  |  A  ~<  x } )
40 vprc 4427 . . . . . 6  |-  -.  _V  e.  _V
41 inteq 4128 . . . . . . . 8  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  |^| { x  e.  On  |  A  ~<  x }  =  |^| (/) )
42 int0 4139 . . . . . . . 8  |-  |^| (/)  =  _V
4341, 42syl6eq 2489 . . . . . . 7  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  |^| { x  e.  On  |  A  ~<  x }  =  _V )
4443eleq1d 2507 . . . . . 6  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  ( |^| { x  e.  On  |  A  ~<  x }  e.  _V  <->  _V  e.  _V ) )
4540, 44mtbiri 303 . . . . 5  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  -.  |^| { x  e.  On  |  A  ~<  x }  e.  _V )
46 fvex 5698 . . . . . 6  |-  ( card `  |^| { x  e.  On  |  A  ~<  x } )  e.  _V
47 eleq1 2501 . . . . . 6  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  ( ( card `  |^| { x  e.  On  |  A  ~<  x } )  e.  _V  <->  |^| { x  e.  On  |  A  ~<  x }  e.  _V )
)
4846, 47mpbii 211 . . . . 5  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  |^|
{ x  e.  On  |  A  ~<  x }  e.  _V )
4945, 48nsyl 121 . . . 4  |-  ( { x  e.  On  |  A  ~<  x }  =  (/) 
->  -.  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
5049necon2ai 2654 . . 3  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  { x  e.  On  |  A  ~<  x }  =/=  (/) )
51 rabn0 3654 . . 3  |-  ( { x  e.  On  |  A  ~<  x }  =/=  (/)  <->  E. x  e.  On  A  ~<  x )
5250, 51sylib 196 . 2  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  ->  E. x  e.  On  A  ~<  x )
5339, 52impbii 188 1  |-  ( E. x  e.  On  A  ~<  x  <->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    C_ wss 3325   (/)c0 3634   |^|cint 4125   class class class wbr 4289   Ord word 4714   Oncon0 4715   ` cfv 5415    ~~ cen 7303    ~<_ cdom 7304    ~< csdm 7305   cardccrd 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-card 8105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator