MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Unicode version

Theorem cardmin 8940
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin  |-  ( A  e.  V  ->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem cardmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 numthcor 8875 . . 3  |-  ( A  e.  V  ->  E. x  e.  On  A  ~<  x
)
2 onintrab2 6587 . . 3  |-  ( E. x  e.  On  A  ~<  x  <->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
31, 2sylib 199 . 2  |-  ( A  e.  V  ->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
4 onelon 5410 . . . . . . . . 9  |-  ( (
|^| { x  e.  On  |  A  ~<  x }  e.  On  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  e.  On )
54ex 435 . . . . . . . 8  |-  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  ->  ( y  e. 
|^| { x  e.  On  |  A  ~<  x }  ->  y  e.  On ) )
63, 5syl 17 . . . . . . 7  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  y  e.  On ) )
7 breq2 4370 . . . . . . . 8  |-  ( x  =  y  ->  ( A  ~<  x  <->  A  ~<  y ) )
87onnminsb 6589 . . . . . . 7  |-  ( y  e.  On  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  -.  A  ~<  y ) )
96, 8syli 38 . . . . . 6  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  -.  A  ~<  y ) )
10 vex 3025 . . . . . . 7  |-  y  e. 
_V
11 domtri 8932 . . . . . . 7  |-  ( ( y  e.  _V  /\  A  e.  V )  ->  ( y  ~<_  A  <->  -.  A  ~<  y ) )
1210, 11mpan 674 . . . . . 6  |-  ( A  e.  V  ->  (
y  ~<_  A  <->  -.  A  ~<  y ) )
139, 12sylibrd 237 . . . . 5  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  y  ~<_  A ) )
14 nfcv 2569 . . . . . . . 8  |-  F/_ x A
15 nfcv 2569 . . . . . . . 8  |-  F/_ x  ~<
16 nfrab1 2948 . . . . . . . . 9  |-  F/_ x { x  e.  On  |  A  ~<  x }
1716nfint 4208 . . . . . . . 8  |-  F/_ x |^| { x  e.  On  |  A  ~<  x }
1814, 15, 17nfbr 4411 . . . . . . 7  |-  F/ x  A  ~<  |^| { x  e.  On  |  A  ~<  x }
19 breq2 4370 . . . . . . 7  |-  ( x  =  |^| { x  e.  On  |  A  ~<  x }  ->  ( A  ~<  x  <->  A  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
2018, 19onminsb 6584 . . . . . 6  |-  ( E. x  e.  On  A  ~<  x  ->  A  ~<  |^|
{ x  e.  On  |  A  ~<  x }
)
211, 20syl 17 . . . . 5  |-  ( A  e.  V  ->  A  ~<  |^| { x  e.  On  |  A  ~<  x } )
2213, 21jctird 546 . . . 4  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  ( y  ~<_  A  /\  A  ~<  |^| { x  e.  On  |  A  ~<  x } ) ) )
23 domsdomtr 7660 . . . 4  |-  ( ( y  ~<_  A  /\  A  ~<  |^| { x  e.  On  |  A  ~<  x } )  ->  y  ~<  |^| { x  e.  On  |  A  ~<  x } )
2422, 23syl6 34 . . 3  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  y  ~<  |^|
{ x  e.  On  |  A  ~<  x }
) )
2524ralrimiv 2777 . 2  |-  ( A  e.  V  ->  A. y  e.  |^| { x  e.  On  |  A  ~<  x } y  ~<  |^| { x  e.  On  |  A  ~<  x } )
26 iscard 8361 . 2  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  <->  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  /\  A. y  e. 
|^| { x  e.  On  |  A  ~<  x }
y  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
273, 25, 26sylanbrc 668 1  |-  ( A  e.  V  ->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2714   E.wrex 2715   {crab 2718   _Vcvv 3022   |^|cint 4198   class class class wbr 4366   Oncon0 5385   ` cfv 5544    ~<_ cdom 7522    ~< csdm 7523   cardccrd 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-ac2 8844
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-wrecs 6983  df-recs 7045  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-card 8325  df-ac 8498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator