MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Unicode version

Theorem cardmin 8928
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin  |-  ( A  e.  V  ->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem cardmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 numthcor 8863 . . 3  |-  ( A  e.  V  ->  E. x  e.  On  A  ~<  x
)
2 onintrab2 6608 . . 3  |-  ( E. x  e.  On  A  ~<  x  <->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
31, 2sylib 196 . 2  |-  ( A  e.  V  ->  |^| { x  e.  On  |  A  ~<  x }  e.  On )
4 onelon 4896 . . . . . . . . 9  |-  ( (
|^| { x  e.  On  |  A  ~<  x }  e.  On  /\  y  e. 
|^| { x  e.  On  |  A  ~<  x }
)  ->  y  e.  On )
54ex 434 . . . . . . . 8  |-  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  ->  ( y  e. 
|^| { x  e.  On  |  A  ~<  x }  ->  y  e.  On ) )
63, 5syl 16 . . . . . . 7  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  y  e.  On ) )
7 breq2 4444 . . . . . . . 8  |-  ( x  =  y  ->  ( A  ~<  x  <->  A  ~<  y ) )
87onnminsb 6610 . . . . . . 7  |-  ( y  e.  On  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  -.  A  ~<  y ) )
96, 8syli 37 . . . . . 6  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  -.  A  ~<  y ) )
10 vex 3109 . . . . . . 7  |-  y  e. 
_V
11 domtri 8920 . . . . . . 7  |-  ( ( y  e.  _V  /\  A  e.  V )  ->  ( y  ~<_  A  <->  -.  A  ~<  y ) )
1210, 11mpan 670 . . . . . 6  |-  ( A  e.  V  ->  (
y  ~<_  A  <->  -.  A  ~<  y ) )
139, 12sylibrd 234 . . . . 5  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  y  ~<_  A ) )
14 nfcv 2622 . . . . . . . 8  |-  F/_ x A
15 nfcv 2622 . . . . . . . 8  |-  F/_ x  ~<
16 nfrab1 3035 . . . . . . . . 9  |-  F/_ x { x  e.  On  |  A  ~<  x }
1716nfint 4285 . . . . . . . 8  |-  F/_ x |^| { x  e.  On  |  A  ~<  x }
1814, 15, 17nfbr 4484 . . . . . . 7  |-  F/ x  A  ~<  |^| { x  e.  On  |  A  ~<  x }
19 breq2 4444 . . . . . . 7  |-  ( x  =  |^| { x  e.  On  |  A  ~<  x }  ->  ( A  ~<  x  <->  A  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
2018, 19onminsb 6605 . . . . . 6  |-  ( E. x  e.  On  A  ~<  x  ->  A  ~<  |^|
{ x  e.  On  |  A  ~<  x }
)
211, 20syl 16 . . . . 5  |-  ( A  e.  V  ->  A  ~<  |^| { x  e.  On  |  A  ~<  x } )
2213, 21jctird 544 . . . 4  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  ( y  ~<_  A  /\  A  ~<  |^| { x  e.  On  |  A  ~<  x } ) ) )
23 domsdomtr 7642 . . . 4  |-  ( ( y  ~<_  A  /\  A  ~<  |^| { x  e.  On  |  A  ~<  x } )  ->  y  ~<  |^| { x  e.  On  |  A  ~<  x } )
2422, 23syl6 33 . . 3  |-  ( A  e.  V  ->  (
y  e.  |^| { x  e.  On  |  A  ~<  x }  ->  y  ~<  |^|
{ x  e.  On  |  A  ~<  x }
) )
2524ralrimiv 2869 . 2  |-  ( A  e.  V  ->  A. y  e.  |^| { x  e.  On  |  A  ~<  x } y  ~<  |^| { x  e.  On  |  A  ~<  x } )
26 iscard 8345 . 2  |-  ( (
card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x }  <->  ( |^| { x  e.  On  |  A  ~<  x }  e.  On  /\  A. y  e. 
|^| { x  e.  On  |  A  ~<  x }
y  ~<  |^| { x  e.  On  |  A  ~<  x } ) )
273, 25, 26sylanbrc 664 1  |-  ( A  e.  V  ->  ( card `  |^| { x  e.  On  |  A  ~<  x } )  =  |^| { x  e.  On  |  A  ~<  x } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3106   |^|cint 4275   class class class wbr 4440   Oncon0 4871   ` cfv 5579    ~<_ cdom 7504    ~< csdm 7505   cardccrd 8305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-recs 7032  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-card 8309  df-ac 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator