MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Structured version   Unicode version

Theorem cardinfima 8481
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 3104 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 isinfcard 8476 . . . . . . . . . . . . 13  |-  ( ( om  C_  ( F `  x )  /\  ( card `  ( F `  x ) )  =  ( F `  x
) )  <->  ( F `  x )  e.  ran  aleph
)
32bicomi 202 . . . . . . . . . . . 12  |-  ( ( F `  x )  e.  ran  aleph  <->  ( om  C_  ( F `  x
)  /\  ( card `  ( F `  x
) )  =  ( F `  x ) ) )
43simplbi 460 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ran  aleph  ->  om  C_  ( F `  x )
)
5 ffn 5721 . . . . . . . . . . . 12  |-  ( F : A --> ( om  u.  ran  aleph )  ->  F  Fn  A )
6 fnfvelrn 6013 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  ran  F
)
76ex 434 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ran  F
) )
8 fnima 5689 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
98eleq2d 2513 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
( F `  x
)  e.  ( F
" A )  <->  ( F `  x )  e.  ran  F ) )
107, 9sylibrd 234 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ( F
" A ) ) )
11 elssuni 4264 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  ( F " A )  ->  ( F `  x )  C_ 
U. ( F " A ) )
1210, 11syl6 33 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  C_  U. ( F " A ) ) )
1312imp 429 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
145, 13sylan 471 . . . . . . . . . . 11  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
154, 14sylan9ssr 3503 . . . . . . . . . 10  |-  ( ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  /\  ( F `  x
)  e.  ran  aleph )  ->  om  C_  U. ( F
" A ) )
1615anasss 647 . . . . . . . . 9  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) )
1716a1i 11 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) ) )
18 carduniima 8480 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )
19 iscard3 8477 . . . . . . . . . 10  |-  ( (
card `  U. ( F
" A ) )  =  U. ( F
" A )  <->  U. ( F " A )  e.  ( om  u.  ran  aleph
) )
2018, 19syl6ibr 227 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
2120adantrd 468 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( card `  U. ( F " A ) )  =  U. ( F " A ) ) )
2217, 21jcad 533 . . . . . . 7  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) ) )
23 isinfcard 8476 . . . . . . 7  |-  ( ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) )  <->  U. ( F " A
)  e.  ran  aleph )
2422, 23syl6ib 226 . . . . . 6  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  U. ( F " A )  e.  ran  aleph
) )
2524exp4d 609 . . . . 5  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) ) ) )
2625imp 429 . . . 4  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e. 
ran  aleph ) ) )
2726rexlimdv 2933 . . 3  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( E. x  e.  A  ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) )
2827expimpd 603 . 2  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
291, 28syl 16 1  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   E.wrex 2794   _Vcvv 3095    u. cun 3459    C_ wss 3461   U.cuni 4234   ran crn 4990   "cima 4992    Fn wfn 5573   -->wf 5574   ` cfv 5578   omcom 6685   cardccrd 8319   alephcale 8320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-om 6686  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-oi 7938  df-har 7987  df-card 8323  df-aleph 8324
This theorem is referenced by:  alephfplem4  8491
  Copyright terms: Public domain W3C validator