MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Structured version   Visualization version   Unicode version

Theorem cardinfima 8546
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 3040 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 isinfcard 8541 . . . . . . . . . . . . 13  |-  ( ( om  C_  ( F `  x )  /\  ( card `  ( F `  x ) )  =  ( F `  x
) )  <->  ( F `  x )  e.  ran  aleph
)
32bicomi 207 . . . . . . . . . . . 12  |-  ( ( F `  x )  e.  ran  aleph  <->  ( om  C_  ( F `  x
)  /\  ( card `  ( F `  x
) )  =  ( F `  x ) ) )
43simplbi 467 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ran  aleph  ->  om  C_  ( F `  x )
)
5 ffn 5739 . . . . . . . . . . . 12  |-  ( F : A --> ( om  u.  ran  aleph )  ->  F  Fn  A )
6 fnfvelrn 6034 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  ran  F
)
76ex 441 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ran  F
) )
8 fnima 5704 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
98eleq2d 2534 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
( F `  x
)  e.  ( F
" A )  <->  ( F `  x )  e.  ran  F ) )
107, 9sylibrd 242 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ( F
" A ) ) )
11 elssuni 4219 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  ( F " A )  ->  ( F `  x )  C_ 
U. ( F " A ) )
1210, 11syl6 33 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  C_  U. ( F " A ) ) )
1312imp 436 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
145, 13sylan 479 . . . . . . . . . . 11  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
154, 14sylan9ssr 3432 . . . . . . . . . 10  |-  ( ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  /\  ( F `  x
)  e.  ran  aleph )  ->  om  C_  U. ( F
" A ) )
1615anasss 659 . . . . . . . . 9  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) )
1716a1i 11 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) ) )
18 carduniima 8545 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )
19 iscard3 8542 . . . . . . . . . 10  |-  ( (
card `  U. ( F
" A ) )  =  U. ( F
" A )  <->  U. ( F " A )  e.  ( om  u.  ran  aleph
) )
2018, 19syl6ibr 235 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
2120adantrd 475 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( card `  U. ( F " A ) )  =  U. ( F " A ) ) )
2217, 21jcad 542 . . . . . . 7  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) ) )
23 isinfcard 8541 . . . . . . 7  |-  ( ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) )  <->  U. ( F " A
)  e.  ran  aleph )
2422, 23syl6ib 234 . . . . . 6  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  U. ( F " A )  e.  ran  aleph
) )
2524exp4d 620 . . . . 5  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) ) ) )
2625imp 436 . . . 4  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e. 
ran  aleph ) ) )
2726rexlimdv 2870 . . 3  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( E. x  e.  A  ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) )
2827expimpd 614 . 2  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
291, 28syl 17 1  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757   _Vcvv 3031    u. cun 3388    C_ wss 3390   U.cuni 4190   ran crn 4840   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589   omcom 6711   cardccrd 8387   alephcale 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-oi 8043  df-har 8091  df-card 8391  df-aleph 8392
This theorem is referenced by:  alephfplem4  8556
  Copyright terms: Public domain W3C validator