MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   Unicode version

Theorem carddom2 8408
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 8976, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 8401 . 2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  ->  A  ~<_  B ) )
2 brdom2 7596 . . 3  |-  ( A  ~<_  B  <->  ( A  ~<  B  \/  A  ~~  B
) )
3 cardon 8375 . . . . . . . 8  |-  ( card `  A )  e.  On
43onelssi 5530 . . . . . . 7  |-  ( (
card `  B )  e.  ( card `  A
)  ->  ( card `  B )  C_  ( card `  A ) )
5 carddomi2 8401 . . . . . . . 8  |-  ( ( B  e.  dom  card  /\  A  e.  dom  card )  ->  ( ( card `  B )  C_  ( card `  A )  ->  B  ~<_  A ) )
65ancoms 455 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  B )  C_  ( card `  A )  ->  B  ~<_  A ) )
7 domnsym 7695 . . . . . . 7  |-  ( B  ~<_  A  ->  -.  A  ~<  B )
84, 6, 7syl56 35 . . . . . 6  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  B )  e.  (
card `  A )  ->  -.  A  ~<  B ) )
98con2d 119 . . . . 5  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<  B  ->  -.  ( card `  B )  e.  (
card `  A )
) )
10 cardon 8375 . . . . . 6  |-  ( card `  B )  e.  On
11 ontri1 5456 . . . . . 6  |-  ( ( ( card `  A
)  e.  On  /\  ( card `  B )  e.  On )  ->  (
( card `  A )  C_  ( card `  B
)  <->  -.  ( card `  B )  e.  (
card `  A )
) )
123, 10, 11mp2an 677 . . . . 5  |-  ( (
card `  A )  C_  ( card `  B
)  <->  -.  ( card `  B )  e.  (
card `  A )
)
139, 12syl6ibr 231 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<  B  ->  ( card `  A
)  C_  ( card `  B ) ) )
14 carden2b 8398 . . . . . 6  |-  ( A 
~~  B  ->  ( card `  A )  =  ( card `  B
) )
15 eqimss 3483 . . . . . 6  |-  ( (
card `  A )  =  ( card `  B
)  ->  ( card `  A )  C_  ( card `  B ) )
1614, 15syl 17 . . . . 5  |-  ( A 
~~  B  ->  ( card `  A )  C_  ( card `  B )
)
1716a1i 11 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~~  B  ->  ( card `  A
)  C_  ( card `  B ) ) )
1813, 17jaod 382 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( A 
~<  B  \/  A  ~~  B )  ->  ( card `  A )  C_  ( card `  B )
) )
192, 18syl5bi 221 . 2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  ->  ( card `  A
)  C_  ( card `  B ) ) )
201, 19impbid 194 1  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1443    e. wcel 1886    C_ wss 3403   class class class wbr 4401   dom cdm 4833   Oncon0 5422   ` cfv 5581    ~~ cen 7563    ~<_ cdom 7564    ~< csdm 7565   cardccrd 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-ord 5425  df-on 5426  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-card 8370
This theorem is referenced by:  carduni  8412  carden2  8418  cardsdom2  8419  domtri2  8420  infxpidm2  8445  cardaleph  8517  infenaleph  8519  alephinit  8523  ficardun2  8630  ackbij2  8670  cfflb  8686  fin1a2lem9  8835  carddom  8976  pwfseqlem5  9085  hashdom  12555
  Copyright terms: Public domain W3C validator