![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > card0 | Structured version Unicode version |
Description: The cardinality of the empty set is the empty set. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
card0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4881 |
. . 3
![]() ![]() ![]() ![]() | |
2 | cardonle 8239 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ss0b 3776 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpbi 208 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1955 ax-ext 2432 ax-sep 4522 ax-nul 4530 ax-pow 4579 ax-pr 4640 ax-un 6483 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2266 df-mo 2267 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2604 df-ne 2650 df-ral 2804 df-rex 2805 df-rab 2808 df-v 3080 df-sbc 3295 df-dif 3440 df-un 3442 df-in 3444 df-ss 3451 df-pss 3453 df-nul 3747 df-if 3901 df-pw 3971 df-sn 3987 df-pr 3989 df-tp 3991 df-op 3993 df-uni 4201 df-int 4238 df-br 4402 df-opab 4460 df-mpt 4461 df-tr 4495 df-eprel 4741 df-id 4745 df-po 4750 df-so 4751 df-fr 4788 df-we 4790 df-ord 4831 df-on 4832 df-xp 4955 df-rel 4956 df-cnv 4957 df-co 4958 df-dm 4959 df-rn 4960 df-res 4961 df-ima 4962 df-iota 5490 df-fun 5529 df-fn 5530 df-f 5531 df-f1 5532 df-fo 5533 df-f1o 5534 df-fv 5535 df-en 7422 df-card 8221 |
This theorem is referenced by: cardidm 8241 cardnueq0 8246 alephcard 8352 ackbij2lem2 8521 cf0 8532 cardcf 8533 cardeq0 8828 |
Copyright terms: Public domain | W3C validator |