Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovordig Structured version   Unicode version

Theorem caovordig 6461
 Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
caovordig.1
Assertion
Ref Expression
caovordig
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovordig
StepHypRef Expression
1 caovordig.1 . . 3
21ralrimivvva 2863 . 2
3 breq1 4436 . . . 4
4 oveq2 6285 . . . . 5
54breq1d 4443 . . . 4
63, 5imbi12d 320 . . 3
7 breq2 4437 . . . 4
8 oveq2 6285 . . . . 5
98breq2d 4445 . . . 4
107, 9imbi12d 320 . . 3
11 oveq1 6284 . . . . 5
12 oveq1 6284 . . . . 5
1311, 12breq12d 4446 . . . 4
1413imbi2d 316 . . 3
156, 10, 14rspc3v 3206 . 2
162, 15mpan9 469 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   w3a 972   wceq 1381   wcel 1802  wral 2791   class class class wbr 4433  (class class class)co 6277 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-iota 5537  df-fv 5582  df-ov 6280 This theorem is referenced by:  caovordid  6462
 Copyright terms: Public domain W3C validator