Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovord3d Structured version   Unicode version

Theorem caovord3d 6470
 Description: Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1
caovordd.2
caovordd.3
caovordd.4
caovord2d.com
caovord3d.5
Assertion
Ref Expression
caovord3d
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovord3d
StepHypRef Expression
1 breq1 4440 . 2
2 caovordg.1 . . . 4
3 caovordd.2 . . . 4
4 caovordd.4 . . . 4
5 caovordd.3 . . . 4
6 caovord2d.com . . . 4
72, 3, 4, 5, 6caovord2d 6469 . . 3
8 caovord3d.5 . . . 4
92, 8, 5, 4caovordd 6468 . . 3
107, 9bibi12d 321 . 2
111, 10syl5ibr 221 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   w3a 974   wceq 1383   wcel 1804   class class class wbr 4437  (class class class)co 6281 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-iota 5541  df-fv 5586  df-ov 6284 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator