MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovord Structured version   Unicode version

Theorem caovord 6480
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
caovord.1  |-  A  e. 
_V
caovord.2  |-  B  e. 
_V
caovord.3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
Assertion
Ref Expression
caovord  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z

Proof of Theorem caovord
StepHypRef Expression
1 oveq1 6301 . . . 4  |-  ( z  =  C  ->  (
z F A )  =  ( C F A ) )
2 oveq1 6301 . . . 4  |-  ( z  =  C  ->  (
z F B )  =  ( C F B ) )
31, 2breq12d 4465 . . 3  |-  ( z  =  C  ->  (
( z F A ) R ( z F B )  <->  ( C F A ) R ( C F B ) ) )
43bibi2d 318 . 2  |-  ( z  =  C  ->  (
( A R B  <-> 
( z F A ) R ( z F B ) )  <-> 
( A R B  <-> 
( C F A ) R ( C F B ) ) ) )
5 caovord.1 . . 3  |-  A  e. 
_V
6 caovord.2 . . 3  |-  B  e. 
_V
7 breq1 4455 . . . . . 6  |-  ( x  =  A  ->  (
x R y  <->  A R
y ) )
8 oveq2 6302 . . . . . . 7  |-  ( x  =  A  ->  (
z F x )  =  ( z F A ) )
98breq1d 4462 . . . . . 6  |-  ( x  =  A  ->  (
( z F x ) R ( z F y )  <->  ( z F A ) R ( z F y ) ) )
107, 9bibi12d 321 . . . . 5  |-  ( x  =  A  ->  (
( x R y  <-> 
( z F x ) R ( z F y ) )  <-> 
( A R y  <-> 
( z F A ) R ( z F y ) ) ) )
11 breq2 4456 . . . . . 6  |-  ( y  =  B  ->  ( A R y  <->  A R B ) )
12 oveq2 6302 . . . . . . 7  |-  ( y  =  B  ->  (
z F y )  =  ( z F B ) )
1312breq2d 4464 . . . . . 6  |-  ( y  =  B  ->  (
( z F A ) R ( z F y )  <->  ( z F A ) R ( z F B ) ) )
1411, 13bibi12d 321 . . . . 5  |-  ( y  =  B  ->  (
( A R y  <-> 
( z F A ) R ( z F y ) )  <-> 
( A R B  <-> 
( z F A ) R ( z F B ) ) ) )
1510, 14sylan9bb 699 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x R y  <->  ( z F x ) R ( z F y ) )  <->  ( A R B  <->  ( z F A ) R ( z F B ) ) ) )
1615imbi2d 316 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )  <->  ( z  e.  S  ->  ( A R B  <->  ( z F A ) R ( z F B ) ) ) ) )
17 caovord.3 . . 3  |-  ( z  e.  S  ->  (
x R y  <->  ( z F x ) R ( z F y ) ) )
185, 6, 16, 17vtocl2 3171 . 2  |-  ( z  e.  S  ->  ( A R B  <->  ( z F A ) R ( z F B ) ) )
194, 18vtoclga 3182 1  |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   class class class wbr 4452  (class class class)co 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6297
This theorem is referenced by:  caovord2  6481  caovord3  6482  genpcl  9396
  Copyright terms: Public domain W3C validator