MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovmo Structured version   Unicode version

Theorem caovmo 6520
Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 4-Mar-1996.)
Hypotheses
Ref Expression
caovmo.2  |-  B  e.  S
caovmo.dom  |-  dom  F  =  ( S  X.  S )
caovmo.3  |-  -.  (/)  e.  S
caovmo.com  |-  ( x F y )  =  ( y F x )
caovmo.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
caovmo.id  |-  ( x  e.  S  ->  (
x F B )  =  x )
Assertion
Ref Expression
caovmo  |-  E* w
( A F w )  =  B
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, F, y, z    x, S, y, z    w, A, x, y    w, B, z   
w, F    w, S

Proof of Theorem caovmo
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6312 . . . . . 6  |-  ( u  =  A  ->  (
u F w )  =  ( A F w ) )
21eqeq1d 2431 . . . . 5  |-  ( u  =  A  ->  (
( u F w )  =  B  <->  ( A F w )  =  B ) )
32mobidv 2289 . . . 4  |-  ( u  =  A  ->  ( E* w ( u F w )  =  B  <->  E* w ( A F w )  =  B ) )
4 oveq2 6313 . . . . . . 7  |-  ( w  =  v  ->  (
u F w )  =  ( u F v ) )
54eqeq1d 2431 . . . . . 6  |-  ( w  =  v  ->  (
( u F w )  =  B  <->  ( u F v )  =  B ) )
65mo4 2316 . . . . 5  |-  ( E* w ( u F w )  =  B  <->  A. w A. v ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  w  =  v ) )
7 simpr 462 . . . . . . . . 9  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( u F v )  =  B )
87oveq2d 6321 . . . . . . . 8  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( w F ( u F v ) )  =  ( w F B ) )
9 simpl 458 . . . . . . . . . 10  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( u F w )  =  B )
109oveq1d 6320 . . . . . . . . 9  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( ( u F w ) F v )  =  ( B F v ) )
11 vex 3090 . . . . . . . . . . 11  |-  u  e. 
_V
12 vex 3090 . . . . . . . . . . 11  |-  w  e. 
_V
13 vex 3090 . . . . . . . . . . 11  |-  v  e. 
_V
14 caovmo.ass . . . . . . . . . . 11  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
1511, 12, 13, 14caovass 6483 . . . . . . . . . 10  |-  ( ( u F w ) F v )  =  ( u F ( w F v ) )
16 caovmo.com . . . . . . . . . . 11  |-  ( x F y )  =  ( y F x )
1711, 12, 13, 16, 14caov12 6511 . . . . . . . . . 10  |-  ( u F ( w F v ) )  =  ( w F ( u F v ) )
1815, 17eqtri 2458 . . . . . . . . 9  |-  ( ( u F w ) F v )  =  ( w F ( u F v ) )
19 caovmo.2 . . . . . . . . . . 11  |-  B  e.  S
2019elexi 3097 . . . . . . . . . 10  |-  B  e. 
_V
2120, 13, 16caovcom 6480 . . . . . . . . 9  |-  ( B F v )  =  ( v F B )
2210, 18, 213eqtr3g 2493 . . . . . . . 8  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( w F ( u F v ) )  =  ( v F B ) )
238, 22eqtr3d 2472 . . . . . . 7  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( w F B )  =  ( v F B ) )
249, 19syl6eqel 2525 . . . . . . . . . 10  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( u F w )  e.  S
)
25 caovmo.dom . . . . . . . . . . 11  |-  dom  F  =  ( S  X.  S )
26 caovmo.3 . . . . . . . . . . 11  |-  -.  (/)  e.  S
2725, 26ndmovrcl 6469 . . . . . . . . . 10  |-  ( ( u F w )  e.  S  ->  (
u  e.  S  /\  w  e.  S )
)
2824, 27syl 17 . . . . . . . . 9  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( u  e.  S  /\  w  e.  S ) )
2928simprd 464 . . . . . . . 8  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  w  e.  S
)
30 oveq1 6312 . . . . . . . . . 10  |-  ( x  =  w  ->  (
x F B )  =  ( w F B ) )
31 id 23 . . . . . . . . . 10  |-  ( x  =  w  ->  x  =  w )
3230, 31eqeq12d 2451 . . . . . . . . 9  |-  ( x  =  w  ->  (
( x F B )  =  x  <->  ( w F B )  =  w ) )
33 caovmo.id . . . . . . . . 9  |-  ( x  e.  S  ->  (
x F B )  =  x )
3432, 33vtoclga 3151 . . . . . . . 8  |-  ( w  e.  S  ->  (
w F B )  =  w )
3529, 34syl 17 . . . . . . 7  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( w F B )  =  w )
367, 19syl6eqel 2525 . . . . . . . . . 10  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( u F v )  e.  S
)
3725, 26ndmovrcl 6469 . . . . . . . . . 10  |-  ( ( u F v )  e.  S  ->  (
u  e.  S  /\  v  e.  S )
)
3836, 37syl 17 . . . . . . . . 9  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( u  e.  S  /\  v  e.  S ) )
3938simprd 464 . . . . . . . 8  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  v  e.  S
)
40 oveq1 6312 . . . . . . . . . 10  |-  ( x  =  v  ->  (
x F B )  =  ( v F B ) )
41 id 23 . . . . . . . . . 10  |-  ( x  =  v  ->  x  =  v )
4240, 41eqeq12d 2451 . . . . . . . . 9  |-  ( x  =  v  ->  (
( x F B )  =  x  <->  ( v F B )  =  v ) )
4342, 33vtoclga 3151 . . . . . . . 8  |-  ( v  e.  S  ->  (
v F B )  =  v )
4439, 43syl 17 . . . . . . 7  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  ( v F B )  =  v )
4523, 35, 443eqtr3d 2478 . . . . . 6  |-  ( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  w  =  v )
4645ax-gen 1665 . . . . 5  |-  A. v
( ( ( u F w )  =  B  /\  ( u F v )  =  B )  ->  w  =  v )
476, 46mpgbir 1669 . . . 4  |-  E* w
( u F w )  =  B
483, 47vtoclg 3145 . . 3  |-  ( A  e.  S  ->  E* w ( A F w )  =  B )
49 moanimv 2330 . . 3  |-  ( E* w ( A  e.  S  /\  ( A F w )  =  B )  <->  ( A  e.  S  ->  E* w
( A F w )  =  B ) )
5048, 49mpbir 212 . 2  |-  E* w
( A  e.  S  /\  ( A F w )  =  B )
51 eleq1 2501 . . . . . . 7  |-  ( ( A F w )  =  B  ->  (
( A F w )  e.  S  <->  B  e.  S ) )
5219, 51mpbiri 236 . . . . . 6  |-  ( ( A F w )  =  B  ->  ( A F w )  e.  S )
5325, 26ndmovrcl 6469 . . . . . 6  |-  ( ( A F w )  e.  S  ->  ( A  e.  S  /\  w  e.  S )
)
5452, 53syl 17 . . . . 5  |-  ( ( A F w )  =  B  ->  ( A  e.  S  /\  w  e.  S )
)
5554simpld 460 . . . 4  |-  ( ( A F w )  =  B  ->  A  e.  S )
5655ancri 554 . . 3  |-  ( ( A F w )  =  B  ->  ( A  e.  S  /\  ( A F w )  =  B ) )
5756moimi 2319 . 2  |-  ( E* w ( A  e.  S  /\  ( A F w )  =  B )  ->  E* w ( A F w )  =  B )
5850, 57ax-mp 5 1  |-  E* w
( A F w )  =  B
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370   A.wal 1435    = wceq 1437    e. wcel 1870   E*wmo 2267   (/)c0 3767    X. cxp 4852   dom cdm 4854  (class class class)co 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-xp 4860  df-dm 4864  df-iota 5565  df-fv 5609  df-ov 6308
This theorem is referenced by:  recmulnq  9388
  Copyright terms: Public domain W3C validator