MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdi Structured version   Unicode version

Theorem caovdi 6387
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
Hypotheses
Ref Expression
caovdi.1  |-  A  e. 
_V
caovdi.2  |-  B  e. 
_V
caovdi.3  |-  C  e. 
_V
caovdi.4  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
Assertion
Ref Expression
caovdi  |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, G, y, z

Proof of Theorem caovdi
StepHypRef Expression
1 caovdi.1 . 2  |-  A  e. 
_V
2 caovdi.2 . 2  |-  B  e. 
_V
3 caovdi.3 . 2  |-  C  e. 
_V
4 tru 1374 . . 3  |- T.
5 caovdi.4 . . . . 5  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
65a1i 11 . . . 4  |-  ( ( T.  /\  ( x  e.  _V  /\  y  e.  _V  /\  z  e. 
_V ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )
76caovdig 6382 . . 3  |-  ( ( T.  /\  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) ) )
84, 7mpan 670 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) ) )
91, 2, 3, 8mp3an 1315 1  |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 965    = wceq 1370   T. wtru 1371    e. wcel 1758   _Vcvv 3072  (class class class)co 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-iota 5484  df-fv 5529  df-ov 6198
This theorem is referenced by:  caovdir  6402  caovlem2  6404
  Copyright terms: Public domain W3C validator