MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovclg Structured version   Unicode version

Theorem caovclg 6366
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
Assertion
Ref Expression
caovclg  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
Distinct variable groups:    x, y, A    y, B    x, C, y    x, D, y    x, E, y    ph, x, y   
x, F, y
Allowed substitution hint:    B( x)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
21ralrimivva 2803 . 2  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x F y )  e.  E )
3 oveq1 6203 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
43eleq1d 2451 . . 3  |-  ( x  =  A  ->  (
( x F y )  e.  E  <->  ( A F y )  e.  E ) )
5 oveq2 6204 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
65eleq1d 2451 . . 3  |-  ( y  =  B  ->  (
( A F y )  e.  E  <->  ( A F B )  e.  E
) )
74, 6rspc2v 3144 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ( x F y )  e.  E  ->  ( A F B )  e.  E ) )
82, 7mpan9 467 1  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826   A.wral 2732  (class class class)co 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-iota 5460  df-fv 5504  df-ov 6199
This theorem is referenced by:  caovcld  6367  caovcl  6368  grprinvd  6413  seqcl2  12028  seqcaopr  12047  ercpbl  14956  gsumpropd2lem  16017  imasmnd2  16074  imasgrp2  16302  gsumzaddlem  17051  gsumzaddlemOLD  17053  imasring  17381  qusrhm  17998  mplind  18280  plymullem  22698
  Copyright terms: Public domain W3C validator