Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcanrd Structured version   Unicode version

Theorem caovcanrd 6477
 Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1
caovcand.2
caovcand.3
caovcand.4
caovcanrd.5
caovcanrd.6
Assertion
Ref Expression
caovcanrd
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovcanrd
StepHypRef Expression
1 caovcanrd.6 . . . 4
2 caovcanrd.5 . . . 4
3 caovcand.3 . . . 4
41, 2, 3caovcomd 6470 . . 3
5 caovcand.4 . . . 4
61, 2, 5caovcomd 6470 . . 3
74, 6eqeq12d 2479 . 2
8 caovcang.1 . . 3
9 caovcand.2 . . 3
108, 9, 3, 5caovcand 6476 . 2
117, 10bitr3d 255 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   w3a 973   wceq 1395   wcel 1819  (class class class)co 6296 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-iota 5557  df-fv 5602  df-ov 6299 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator