MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov12 Structured version   Unicode version

Theorem caov12 6498
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov12  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov12
StepHypRef Expression
1 caov.1 . . . 4  |-  A  e. 
_V
2 caov.2 . . . 4  |-  B  e. 
_V
3 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
41, 2, 3caovcom 6467 . . 3  |-  ( A F B )  =  ( B F A )
54oveq1i 6305 . 2  |-  ( ( A F B ) F C )  =  ( ( B F A ) F C )
6 caov.3 . . 3  |-  C  e. 
_V
7 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
81, 2, 6, 7caovass 6470 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
92, 1, 6, 7caovass 6470 . 2  |-  ( ( B F A ) F C )  =  ( B F ( A F C ) )
105, 8, 93eqtr3i 2504 1  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   _Vcvv 3118  (class class class)co 6295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-iota 5557  df-fv 5602  df-ov 6298
This theorem is referenced by:  caov31  6499  caov4  6501  caovmo  6507  distrnq  9351  ltaddnq  9364  ltexnq  9365  1idpr  9419  prlem934  9423  prlem936  9437  mulcmpblnrlem  9459  ltsosr  9483  0idsr  9486  1idsr  9487  recexsrlem  9492  mulgt0sr  9494  axmulass  9546
  Copyright terms: Public domain W3C validator