MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov12 Structured version   Unicode version

Theorem caov12 6511
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov12  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov12
StepHypRef Expression
1 caov.1 . . . 4  |-  A  e. 
_V
2 caov.2 . . . 4  |-  B  e. 
_V
3 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
41, 2, 3caovcom 6480 . . 3  |-  ( A F B )  =  ( B F A )
54oveq1i 6315 . 2  |-  ( ( A F B ) F C )  =  ( ( B F A ) F C )
6 caov.3 . . 3  |-  C  e. 
_V
7 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
81, 2, 6, 7caovass 6483 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
92, 1, 6, 7caovass 6483 . 2  |-  ( ( B F A ) F C )  =  ( B F ( A F C ) )
105, 8, 93eqtr3i 2466 1  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1870   _Vcvv 3087  (class class class)co 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-iota 5565  df-fv 5609  df-ov 6308
This theorem is referenced by:  caov31  6512  caov4  6514  caovmo  6520  distrnq  9385  ltaddnq  9398  ltexnq  9399  1idpr  9453  prlem934  9457  prlem936  9471  mulcmpblnrlem  9493  ltsosr  9517  0idsr  9520  1idsr  9521  recexsrlem  9526  mulgt0sr  9528  axmulass  9580
  Copyright terms: Public domain W3C validator