MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofrss Structured version   Unicode version

Theorem caofrss 6572
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofrss.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y  ->  x T y ) )
Assertion
Ref Expression
caofrss  |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
Distinct variable groups:    x, y, F    x, G, y    ph, x, y    x, R, y    x, S, y    x, T, y
Allowed substitution hints:    A( x, y)    V( x, y)

Proof of Theorem caofrss
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . 5  |-  ( ph  ->  F : A --> S )
21ffvelrnda 6032 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
3 caofcom.3 . . . . 5  |-  ( ph  ->  G : A --> S )
43ffvelrnda 6032 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
5 caofrss.4 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x R y  ->  x T y ) )
65ralrimivva 2878 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T y ) )
76adantr 465 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T y ) )
8 breq1 4459 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
x R y  <->  ( F `  w ) R y ) )
9 breq1 4459 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
x T y  <->  ( F `  w ) T y ) )
108, 9imbi12d 320 . . . . 5  |-  ( x  =  ( F `  w )  ->  (
( x R y  ->  x T y )  <->  ( ( F `
 w ) R y  ->  ( F `  w ) T y ) ) )
11 breq2 4460 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) R y  <->  ( F `  w ) R ( G `  w ) ) )
12 breq2 4460 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) T y  <->  ( F `  w ) T ( G `  w ) ) )
1311, 12imbi12d 320 . . . . 5  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) R y  ->  ( F `  w ) T y )  <->  ( ( F `
 w ) R ( G `  w
)  ->  ( F `  w ) T ( G `  w ) ) ) )
1410, 13rspc2va 3220 . . . 4  |-  ( ( ( ( F `  w )  e.  S  /\  ( G `  w
)  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x R y  ->  x T
y ) )  -> 
( ( F `  w ) R ( G `  w )  ->  ( F `  w ) T ( G `  w ) ) )
152, 4, 7, 14syl21anc 1227 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w )  -> 
( F `  w
) T ( G `
 w ) ) )
1615ralimdva 2865 . 2  |-  ( ph  ->  ( A. w  e.  A  ( F `  w ) R ( G `  w )  ->  A. w  e.  A  ( F `  w ) T ( G `  w ) ) )
17 ffn 5737 . . . 4  |-  ( F : A --> S  ->  F  Fn  A )
181, 17syl 16 . . 3  |-  ( ph  ->  F  Fn  A )
19 ffn 5737 . . . 4  |-  ( G : A --> S  ->  G  Fn  A )
203, 19syl 16 . . 3  |-  ( ph  ->  G  Fn  A )
21 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
22 inidm 3703 . . 3  |-  ( A  i^i  A )  =  A
23 eqidd 2458 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
24 eqidd 2458 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( G `  w ) )
2518, 20, 21, 21, 22, 23, 24ofrfval 6547 . 2  |-  ( ph  ->  ( F  oR R G  <->  A. w  e.  A  ( F `  w ) R ( G `  w ) ) )
2618, 20, 21, 21, 22, 23, 24ofrfval 6547 . 2  |-  ( ph  ->  ( F  oR T G  <->  A. w  e.  A  ( F `  w ) T ( G `  w ) ) )
2716, 25, 263imtr4d 268 1  |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   class class class wbr 4456    Fn wfn 5589   -->wf 5590   ` cfv 5594    oRcofr 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ofr 6540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator