MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofinvl Structured version   Unicode version

Theorem caofinvl 6549
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofinv.3  |-  ( ph  ->  B  e.  W )
caofinv.4  |-  ( ph  ->  N : S --> S )
caofinv.5  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
caofinvl.6  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
Assertion
Ref Expression
caofinvl  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Distinct variable groups:    x, B    x, F    x, G    ph, x    x, R    x, S    v, A    v, F, x    x, N, v    v, S    ph, v
Allowed substitution hints:    A( x)    B( v)    R( v)    G( v)    V( x, v)    W( x, v)

Proof of Theorem caofinvl
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4  |-  ( ph  ->  A  e.  V )
2 caofinv.4 . . . . . . . . 9  |-  ( ph  ->  N : S --> S )
32adantr 463 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  N : S --> S )
4 caofref.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> S )
54ffvelrnda 6009 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  e.  S )
63, 5ffvelrnd 6010 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  ( N `  ( F `  v ) )  e.  S )
7 eqid 2402 . . . . . . 7  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  =  ( v  e.  A  |->  ( N `  ( F `  v ) ) )
86, 7fmptd 6033 . . . . . 6  |-  ( ph  ->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S )
9 caofinv.5 . . . . . . 7  |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `
 ( F `  v ) ) ) )
109feq1d 5700 . . . . . 6  |-  ( ph  ->  ( G : A --> S 
<->  ( v  e.  A  |->  ( N `  ( F `  v )
) ) : A --> S ) )
118, 10mpbird 232 . . . . 5  |-  ( ph  ->  G : A --> S )
1211ffvelrnda 6009 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
134ffvelrnda 6009 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
14 fvex 5859 . . . . . . 7  |-  ( N `
 ( F `  v ) )  e. 
_V
1514, 7fnmpti 5692 . . . . . 6  |-  ( v  e.  A  |->  ( N `
 ( F `  v ) ) )  Fn  A
169fneq1d 5652 . . . . . 6  |-  ( ph  ->  ( G  Fn  A  <->  ( v  e.  A  |->  ( N `  ( F `
 v ) ) )  Fn  A ) )
1715, 16mpbiri 233 . . . . 5  |-  ( ph  ->  G  Fn  A )
18 dffn5 5894 . . . . 5  |-  ( G  Fn  A  <->  G  =  ( w  e.  A  |->  ( G `  w
) ) )
1917, 18sylib 196 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
204feqmptd 5902 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
211, 12, 13, 19, 20offval2 6538 . . 3  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) ) )
229fveq1d 5851 . . . . . . 7  |-  ( ph  ->  ( G `  w
)  =  ( ( v  e.  A  |->  ( N `  ( F `
 v ) ) ) `  w ) )
23 fveq2 5849 . . . . . . . . 9  |-  ( v  =  w  ->  ( F `  v )  =  ( F `  w ) )
2423fveq2d 5853 . . . . . . . 8  |-  ( v  =  w  ->  ( N `  ( F `  v ) )  =  ( N `  ( F `  w )
) )
25 fvex 5859 . . . . . . . 8  |-  ( N `
 ( F `  w ) )  e. 
_V
2624, 7, 25fvmpt 5932 . . . . . . 7  |-  ( w  e.  A  ->  (
( v  e.  A  |->  ( N `  ( F `  v )
) ) `  w
)  =  ( N `
 ( F `  w ) ) )
2722, 26sylan9eq 2463 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( N `  ( F `  w ) ) )
2827oveq1d 6293 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
29 caofinvl.6 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
( N `  x
) R x )  =  B )
3029ralrimiva 2818 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
3130adantr 463 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  ( ( N `  x ) R x )  =  B )
32 fveq2 5849 . . . . . . . . 9  |-  ( x  =  ( F `  w )  ->  ( N `  x )  =  ( N `  ( F `  w ) ) )
33 id 22 . . . . . . . . 9  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
3432, 33oveq12d 6296 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  (
( N `  x
) R x )  =  ( ( N `
 ( F `  w ) ) R ( F `  w
) ) )
3534eqeq1d 2404 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( ( N `  x ) R x )  =  B  <->  ( ( N `  ( F `  w ) ) R ( F `  w
) )  =  B ) )
3635rspcva 3158 . . . . . 6  |-  ( ( ( F `  w
)  e.  S  /\  A. x  e.  S  ( ( N `  x
) R x )  =  B )  -> 
( ( N `  ( F `  w ) ) R ( F `
 w ) )  =  B )
3713, 31, 36syl2anc 659 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( N `  ( F `  w )
) R ( F `
 w ) )  =  B )
3828, 37eqtrd 2443 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( F `
 w ) )  =  B )
3938mpteq2dva 4481 . . 3  |-  ( ph  ->  ( w  e.  A  |->  ( ( G `  w ) R ( F `  w ) ) )  =  ( w  e.  A  |->  B ) )
4021, 39eqtrd 2443 . 2  |-  ( ph  ->  ( G  oF R F )  =  ( w  e.  A  |->  B ) )
41 fconstmpt 4867 . 2  |-  ( A  X.  { B }
)  =  ( w  e.  A  |->  B )
4240, 41syl6eqr 2461 1  |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   {csn 3972    |-> cmpt 4453    X. cxp 4821    Fn wfn 5564   -->wf 5565   ` cfv 5569  (class class class)co 6278    oFcof 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521
This theorem is referenced by:  grpvlinv  19189  lflnegl  32094
  Copyright terms: Public domain W3C validator