MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid2 Structured version   Unicode version

Theorem caofid2 6350
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofid0.3  |-  ( ph  ->  B  e.  W )
caofid1.4  |-  ( ph  ->  C  e.  X )
caofid2.5  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  C )
Assertion
Ref Expression
caofid2  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  ( A  X.  { C } ) )
Distinct variable groups:    x, B    x, C    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)    W( x)    X( x)

Proof of Theorem caofid2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2  |-  ( ph  ->  A  e.  V )
2 caofid0.3 . . 3  |-  ( ph  ->  B  e.  W )
3 fnconstg 5595 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
42, 3syl 16 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
5 caofref.2 . . 3  |-  ( ph  ->  F : A --> S )
6 ffn 5556 . . 3  |-  ( F : A --> S  ->  F  Fn  A )
75, 6syl 16 . 2  |-  ( ph  ->  F  Fn  A )
8 caofid1.4 . . 3  |-  ( ph  ->  C  e.  X )
9 fnconstg 5595 . . 3  |-  ( C  e.  X  ->  ( A  X.  { C }
)  Fn  A )
108, 9syl 16 . 2  |-  ( ph  ->  ( A  X.  { C } )  Fn  A
)
11 fvconst2g 5928 . . 3  |-  ( ( B  e.  W  /\  w  e.  A )  ->  ( ( A  X.  { B } ) `  w )  =  B )
122, 11sylan 468 . 2  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { B } ) `  w
)  =  B )
13 eqidd 2442 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
145ffvelrnda 5840 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
15 caofid2.5 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  C )
1615ralrimiva 2797 . . . . 5  |-  ( ph  ->  A. x  e.  S  ( B R x )  =  C )
17 oveq2 6098 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  ( B R x )  =  ( B R ( F `  w ) ) )
1817eqeq1d 2449 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( B R x )  =  C  <->  ( B R ( F `  w ) )  =  C ) )
1918rspccva 3069 . . . . 5  |-  ( ( A. x  e.  S  ( B R x )  =  C  /\  ( F `  w )  e.  S )  ->  ( B R ( F `  w ) )  =  C )
2016, 19sylan 468 . . . 4  |-  ( (
ph  /\  ( F `  w )  e.  S
)  ->  ( B R ( F `  w ) )  =  C )
2114, 20syldan 467 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( B R ( F `  w ) )  =  C )
22 fvconst2g 5928 . . . 4  |-  ( ( C  e.  X  /\  w  e.  A )  ->  ( ( A  X.  { C } ) `  w )  =  C )
238, 22sylan 468 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { C } ) `  w
)  =  C )
2421, 23eqtr4d 2476 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( B R ( F `  w ) )  =  ( ( A  X.  { C } ) `  w ) )
251, 4, 7, 10, 12, 13, 24offveq 6340 1  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  ( A  X.  { C } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   {csn 3874    X. cxp 4834    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    oFcof 6317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319
This theorem is referenced by:  mbfmulc2lem  21025  i1fmulc  21081  itg1mulc  21082  itg2mulc  21125  dvcmulf  21319  coe0  21666  plymul0or  21690  expgrowth  29518
  Copyright terms: Public domain W3C validator