MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid0l Structured version   Unicode version

Theorem caofid0l 6461
Description: Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofid0.3  |-  ( ph  ->  B  e.  W )
caofid0l.5  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  x )
Assertion
Ref Expression
caofid0l  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  F )
Distinct variable groups:    x, B    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)    W( x)

Proof of Theorem caofid0l
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2  |-  ( ph  ->  A  e.  V )
2 caofid0.3 . . 3  |-  ( ph  ->  B  e.  W )
3 fnconstg 5709 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
42, 3syl 16 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
5 caofref.2 . . 3  |-  ( ph  ->  F : A --> S )
6 ffn 5670 . . 3  |-  ( F : A --> S  ->  F  Fn  A )
75, 6syl 16 . 2  |-  ( ph  ->  F  Fn  A )
8 fvconst2g 6043 . . 3  |-  ( ( B  e.  W  /\  w  e.  A )  ->  ( ( A  X.  { B } ) `  w )  =  B )
92, 8sylan 471 . 2  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { B } ) `  w
)  =  B )
10 eqidd 2455 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
115ffvelrnda 5955 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
12 caofid0l.5 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  ( B R x )  =  x )
1312ralrimiva 2830 . . . 4  |-  ( ph  ->  A. x  e.  S  ( B R x )  =  x )
14 oveq2 6211 . . . . . 6  |-  ( x  =  ( F `  w )  ->  ( B R x )  =  ( B R ( F `  w ) ) )
15 id 22 . . . . . 6  |-  ( x  =  ( F `  w )  ->  x  =  ( F `  w ) )
1614, 15eqeq12d 2476 . . . . 5  |-  ( x  =  ( F `  w )  ->  (
( B R x )  =  x  <->  ( B R ( F `  w ) )  =  ( F `  w
) ) )
1716rspccva 3178 . . . 4  |-  ( ( A. x  e.  S  ( B R x )  =  x  /\  ( F `  w )  e.  S )  ->  ( B R ( F `  w ) )  =  ( F `  w
) )
1813, 17sylan 471 . . 3  |-  ( (
ph  /\  ( F `  w )  e.  S
)  ->  ( B R ( F `  w ) )  =  ( F `  w
) )
1911, 18syldan 470 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( B R ( F `  w ) )  =  ( F `  w
) )
201, 4, 7, 7, 9, 10, 19offveq 6454 1  |-  ( ph  ->  ( ( A  X.  { B } )  oF R F )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   {csn 3988    X. cxp 4949    Fn wfn 5524   -->wf 5525   ` cfv 5529  (class class class)co 6203    oFcof 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433
This theorem is referenced by:  psr0lid  17592  psrlmod  17598  mndvlid  18421  mendlmod  29718  lfladd0l  33077
  Copyright terms: Public domain W3C validator