Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofcom Structured version   Unicode version

Theorem caofcom 6556
 Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1
caofref.2
caofcom.3
caofcom.4
Assertion
Ref Expression
caofcom
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)

Proof of Theorem caofcom
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . 6
21ffvelrnda 6021 . . . . 5
3 caofcom.3 . . . . . 6
43ffvelrnda 6021 . . . . 5
52, 4jca 532 . . . 4
6 caofcom.4 . . . . 5
76caovcomg 6454 . . . 4
85, 7syldan 470 . . 3
98mpteq2dva 4533 . 2
10 caofref.1 . . 3
111feqmptd 5920 . . 3
123feqmptd 5920 . . 3
1310, 2, 4, 11, 12offval2 6540 . 2
1410, 4, 2, 12, 11offval2 6540 . 2
159, 13, 143eqtr4d 2518 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1379   wcel 1767   cmpt 4505  wf 5584  cfv 5588  (class class class)co 6284   cof 6522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524 This theorem is referenced by:  plydivlem4  22454  quotcan  22467  dchrabl  23285  plymulx0  28172  expgrowth  30868  lfladdcom  33887
 Copyright terms: Public domain W3C validator