Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caofcan Unicode version

Theorem caofcan 27408
Description: Transfer a cancellation law like mulcan 9615 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.)
Hypotheses
Ref Expression
caofcan.1  |-  ( ph  ->  A  e.  V )
caofcan.2  |-  ( ph  ->  F : A --> T )
caofcan.3  |-  ( ph  ->  G : A --> S )
caofcan.4  |-  ( ph  ->  H : A --> S )
caofcan.5  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y )  =  ( x R z )  <-> 
y  =  z ) )
Assertion
Ref Expression
caofcan  |-  ( ph  ->  ( ( F  o F R G )  =  ( F  o F R H )  <->  G  =  H ) )
Distinct variable groups:    x, y,
z, F    x, G, y, z    x, H, y, z    x, R, y, z    ph, x, y, z   
x, S, y, z   
x, T, y, z
Allowed substitution hints:    A( x, y, z)    V( x, y, z)

Proof of Theorem caofcan
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofcan.2 . . . . . . 7  |-  ( ph  ->  F : A --> T )
2 ffn 5550 . . . . . . 7  |-  ( F : A --> T  ->  F  Fn  A )
31, 2syl 16 . . . . . 6  |-  ( ph  ->  F  Fn  A )
4 caofcan.3 . . . . . . 7  |-  ( ph  ->  G : A --> S )
5 ffn 5550 . . . . . . 7  |-  ( G : A --> S  ->  G  Fn  A )
64, 5syl 16 . . . . . 6  |-  ( ph  ->  G  Fn  A )
7 caofcan.1 . . . . . 6  |-  ( ph  ->  A  e.  V )
8 inidm 3510 . . . . . 6  |-  ( A  i^i  A )  =  A
9 eqidd 2405 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
10 eqidd 2405 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  =  ( G `  w ) )
113, 6, 7, 7, 8, 9, 10ofval 6273 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( F  o F R G ) `  w )  =  ( ( F `  w
) R ( G `
 w ) ) )
12 caofcan.4 . . . . . . 7  |-  ( ph  ->  H : A --> S )
13 ffn 5550 . . . . . . 7  |-  ( H : A --> S  ->  H  Fn  A )
1412, 13syl 16 . . . . . 6  |-  ( ph  ->  H  Fn  A )
15 eqidd 2405 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  =  ( H `  w ) )
163, 14, 7, 7, 8, 9, 15ofval 6273 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  (
( F  o F R H ) `  w )  =  ( ( F `  w
) R ( H `
 w ) ) )
1711, 16eqeq12d 2418 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( F  o F R G ) `  w )  =  ( ( F  o F R H ) `  w )  <->  ( ( F `  w ) R ( G `  w ) )  =  ( ( F `  w ) R ( H `  w ) ) ) )
18 simpl 444 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ph )
191ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  T )
204ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
2112ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  e.  S )
22 caofcan.5 . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y )  =  ( x R z )  <-> 
y  =  z ) )
2322caovcang 6207 . . . . 5  |-  ( (
ph  /\  ( ( F `  w )  e.  T  /\  ( G `  w )  e.  S  /\  ( H `  w )  e.  S ) )  -> 
( ( ( F `
 w ) R ( G `  w
) )  =  ( ( F `  w
) R ( H `
 w ) )  <-> 
( G `  w
)  =  ( H `
 w ) ) )
2418, 19, 20, 21, 23syl13anc 1186 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( F `  w ) R ( G `  w ) )  =  ( ( F `  w ) R ( H `  w ) )  <->  ( G `  w )  =  ( H `  w ) ) )
2517, 24bitrd 245 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( F  o F R G ) `  w )  =  ( ( F  o F R H ) `  w )  <->  ( G `  w )  =  ( H `  w ) ) )
2625ralbidva 2682 . 2  |-  ( ph  ->  ( A. w  e.  A  ( ( F  o F R G ) `  w )  =  ( ( F  o F R H ) `  w )  <->  A. w  e.  A  ( G `  w )  =  ( H `  w ) ) )
273, 6, 7, 7, 8offn 6275 . . 3  |-  ( ph  ->  ( F  o F R G )  Fn  A )
283, 14, 7, 7, 8offn 6275 . . 3  |-  ( ph  ->  ( F  o F R H )  Fn  A )
29 eqfnfv 5786 . . 3  |-  ( ( ( F  o F R G )  Fn  A  /\  ( F  o F R H )  Fn  A )  ->  ( ( F  o F R G )  =  ( F  o F R H )  <->  A. w  e.  A  ( ( F  o F R G ) `  w )  =  ( ( F  o F R H ) `  w ) ) )
3027, 28, 29syl2anc 643 . 2  |-  ( ph  ->  ( ( F  o F R G )  =  ( F  o F R H )  <->  A. w  e.  A  ( ( F  o F R G ) `  w )  =  ( ( F  o F R H ) `  w ) ) )
31 eqfnfv 5786 . . 3  |-  ( ( G  Fn  A  /\  H  Fn  A )  ->  ( G  =  H  <->  A. w  e.  A  ( G `  w )  =  ( H `  w ) ) )
326, 14, 31syl2anc 643 . 2  |-  ( ph  ->  ( G  =  H  <->  A. w  e.  A  ( G `  w )  =  ( H `  w ) ) )
3326, 30, 323bitr4d 277 1  |-  ( ph  ->  ( ( F  o F R G )  =  ( F  o F R H )  <->  G  =  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264
  Copyright terms: Public domain W3C validator