MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofass Unicode version

Theorem caofass 6297
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofcom.3  |-  ( ph  ->  G : A --> S )
caofass.4  |-  ( ph  ->  H : A --> S )
caofass.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y ) T z )  =  ( x O ( y P z ) ) )
Assertion
Ref Expression
caofass  |-  ( ph  ->  ( ( F  o F R G )  o F T H )  =  ( F  o F O ( G  o F P H ) ) )
Distinct variable groups:    x, y,
z, F    x, G, y, z    x, H, y, z    x, O, y, z    x, P, y, z    ph, x, y, z   
x, R, y, z   
x, S, y, z   
x, T, y, z
Allowed substitution hints:    A( x, y, z)    V( x, y, z)

Proof of Theorem caofass
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofass.5 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x R y ) T z )  =  ( x O ( y P z ) ) )
21ralrimivvva 2759 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y ) T z )  =  ( x O ( y P z ) ) )
32adantr 452 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  ( (
x R y ) T z )  =  ( x O ( y P z ) ) )
4 caofref.2 . . . . . 6  |-  ( ph  ->  F : A --> S )
54ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
6 caofcom.3 . . . . . 6  |-  ( ph  ->  G : A --> S )
76ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
8 caofass.4 . . . . . 6  |-  ( ph  ->  H : A --> S )
98ffvelrnda 5829 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  e.  S )
10 oveq1 6047 . . . . . . . 8  |-  ( x  =  ( F `  w )  ->  (
x R y )  =  ( ( F `
 w ) R y ) )
1110oveq1d 6055 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
( x R y ) T z )  =  ( ( ( F `  w ) R y ) T z ) )
12 oveq1 6047 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
x O ( y P z ) )  =  ( ( F `
 w ) O ( y P z ) ) )
1311, 12eqeq12d 2418 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( ( x R y ) T z )  =  ( x O ( y P z ) )  <->  ( (
( F `  w
) R y ) T z )  =  ( ( F `  w ) O ( y P z ) ) ) )
14 oveq2 6048 . . . . . . . 8  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) R y )  =  ( ( F `
 w ) R ( G `  w
) ) )
1514oveq1d 6055 . . . . . . 7  |-  ( y  =  ( G `  w )  ->  (
( ( F `  w ) R y ) T z )  =  ( ( ( F `  w ) R ( G `  w ) ) T z ) )
16 oveq1 6047 . . . . . . . 8  |-  ( y  =  ( G `  w )  ->  (
y P z )  =  ( ( G `
 w ) P z ) )
1716oveq2d 6056 . . . . . . 7  |-  ( y  =  ( G `  w )  ->  (
( F `  w
) O ( y P z ) )  =  ( ( F `
 w ) O ( ( G `  w ) P z ) ) )
1815, 17eqeq12d 2418 . . . . . 6  |-  ( y  =  ( G `  w )  ->  (
( ( ( F `
 w ) R y ) T z )  =  ( ( F `  w ) O ( y P z ) )  <->  ( (
( F `  w
) R ( G `
 w ) ) T z )  =  ( ( F `  w ) O ( ( G `  w
) P z ) ) ) )
19 oveq2 6048 . . . . . . 7  |-  ( z  =  ( H `  w )  ->  (
( ( F `  w ) R ( G `  w ) ) T z )  =  ( ( ( F `  w ) R ( G `  w ) ) T ( H `  w
) ) )
20 oveq2 6048 . . . . . . . 8  |-  ( z  =  ( H `  w )  ->  (
( G `  w
) P z )  =  ( ( G `
 w ) P ( H `  w
) ) )
2120oveq2d 6056 . . . . . . 7  |-  ( z  =  ( H `  w )  ->  (
( F `  w
) O ( ( G `  w ) P z ) )  =  ( ( F `
 w ) O ( ( G `  w ) P ( H `  w ) ) ) )
2219, 21eqeq12d 2418 . . . . . 6  |-  ( z  =  ( H `  w )  ->  (
( ( ( F `
 w ) R ( G `  w
) ) T z )  =  ( ( F `  w ) O ( ( G `
 w ) P z ) )  <->  ( (
( F `  w
) R ( G `
 w ) ) T ( H `  w ) )  =  ( ( F `  w ) O ( ( G `  w
) P ( H `
 w ) ) ) ) )
2313, 18, 22rspc3v 3021 . . . . 5  |-  ( ( ( F `  w
)  e.  S  /\  ( G `  w )  e.  S  /\  ( H `  w )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y ) T z )  =  ( x O ( y P z ) )  -> 
( ( ( F `
 w ) R ( G `  w
) ) T ( H `  w ) )  =  ( ( F `  w ) O ( ( G `
 w ) P ( H `  w
) ) ) ) )
245, 7, 9, 23syl3anc 1184 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  S  ( ( x R y ) T z )  =  ( x O ( y P z ) )  -> 
( ( ( F `
 w ) R ( G `  w
) ) T ( H `  w ) )  =  ( ( F `  w ) O ( ( G `
 w ) P ( H `  w
) ) ) ) )
253, 24mpd 15 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( F `  w ) R ( G `  w ) ) T ( H `
 w ) )  =  ( ( F `
 w ) O ( ( G `  w ) P ( H `  w ) ) ) )
2625mpteq2dva 4255 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( ( ( F `
 w ) R ( G `  w
) ) T ( H `  w ) ) )  =  ( w  e.  A  |->  ( ( F `  w
) O ( ( G `  w ) P ( H `  w ) ) ) ) )
27 caofref.1 . . 3  |-  ( ph  ->  A  e.  V )
28 ovex 6065 . . . 4  |-  ( ( F `  w ) R ( G `  w ) )  e. 
_V
2928a1i 11 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R ( G `
 w ) )  e.  _V )
304feqmptd 5738 . . . 4  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
316feqmptd 5738 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
3227, 5, 7, 30, 31offval2 6281 . . 3  |-  ( ph  ->  ( F  o F R G )  =  ( w  e.  A  |->  ( ( F `  w ) R ( G `  w ) ) ) )
338feqmptd 5738 . . 3  |-  ( ph  ->  H  =  ( w  e.  A  |->  ( H `
 w ) ) )
3427, 29, 9, 32, 33offval2 6281 . 2  |-  ( ph  ->  ( ( F  o F R G )  o F T H )  =  ( w  e.  A  |->  ( ( ( F `  w ) R ( G `  w ) ) T ( H `  w
) ) ) )
35 ovex 6065 . . . 4  |-  ( ( G `  w ) P ( H `  w ) )  e. 
_V
3635a1i 11 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) P ( H `
 w ) )  e.  _V )
3727, 7, 9, 31, 33offval2 6281 . . 3  |-  ( ph  ->  ( G  o F P H )  =  ( w  e.  A  |->  ( ( G `  w ) P ( H `  w ) ) ) )
3827, 5, 36, 30, 37offval2 6281 . 2  |-  ( ph  ->  ( F  o F O ( G  o F P H ) )  =  ( w  e.  A  |->  ( ( F `
 w ) O ( ( G `  w ) P ( H `  w ) ) ) ) )
3926, 34, 383eqtr4d 2446 1  |-  ( ph  ->  ( ( F  o F R G )  o F T H )  =  ( F  o F O ( G  o F P H ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262
This theorem is referenced by:  psrgrp  16417  psrlmod  16420  itg2mulc  19592  plydivlem4  20166  dchrabl  20991  mndvass  27315  expgrowth  27420  lfladdass  29556  lflvsass  29564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264
  Copyright terms: Public domain W3C validator