MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalf Structured version   Unicode version

Theorem cantnfvalf 7960
Description: Lemma for cantnf 7988. The function appearing in cantnfval 7963 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
cantnfvalf.f  |-  F  = seq𝜔 ( ( k  e.  A ,  z  e.  B  |->  ( C  +o  D
) ) ,  (/) )
Assertion
Ref Expression
cantnfvalf  |-  F : om
--> On
Distinct variable groups:    z, k, A    B, k, z
Allowed substitution hints:    C( z, k)    D( z, k)    F( z, k)

Proof of Theorem cantnfvalf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalf.f . . 3  |-  F  = seq𝜔 ( ( k  e.  A ,  z  e.  B  |->  ( C  +o  D
) ) ,  (/) )
21fnseqom 6996 . 2  |-  F  Fn  om
3 nn0suc 6586 . . . 4  |-  ( x  e.  om  ->  (
x  =  (/)  \/  E. y  e.  om  x  =  suc  y ) )
4 fveq2 5775 . . . . . . 7  |-  ( x  =  (/)  ->  ( F `
 x )  =  ( F `  (/) ) )
5 0ex 4506 . . . . . . . 8  |-  (/)  e.  _V
61seqom0g 6997 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( F `  (/) )  =  (/) )
75, 6ax-mp 5 . . . . . . 7  |-  ( F `
 (/) )  =  (/)
84, 7syl6eq 2506 . . . . . 6  |-  ( x  =  (/)  ->  ( F `
 x )  =  (/) )
9 0elon 4856 . . . . . 6  |-  (/)  e.  On
108, 9syl6eqel 2544 . . . . 5  |-  ( x  =  (/)  ->  ( F `
 x )  e.  On )
111seqomsuc 6998 . . . . . . . . 9  |-  ( y  e.  om  ->  ( F `  suc  y )  =  ( y ( k  e.  A , 
z  e.  B  |->  ( C  +o  D ) ) ( F `  y ) ) )
12 df-ov 6179 . . . . . . . . 9  |-  ( y ( k  e.  A ,  z  e.  B  |->  ( C  +o  D
) ) ( F `
 y ) )  =  ( ( k  e.  A ,  z  e.  B  |->  ( C  +o  D ) ) `
 <. y ,  ( F `  y )
>. )
1311, 12syl6eq 2506 . . . . . . . 8  |-  ( y  e.  om  ->  ( F `  suc  y )  =  ( ( k  e.  A ,  z  e.  B  |->  ( C  +o  D ) ) `
 <. y ,  ( F `  y )
>. ) )
14 df-ov 6179 . . . . . . . . . . . 12  |-  ( C  +o  D )  =  (  +o  `  <. C ,  D >. )
15 fnoa 7034 . . . . . . . . . . . . . 14  |-  +o  Fn  ( On  X.  On )
16 oacl 7061 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  +o  y
)  e.  On )
1716rgen2a 2868 . . . . . . . . . . . . . 14  |-  A. x  e.  On  A. y  e.  On  ( x  +o  y )  e.  On
18 ffnov 6280 . . . . . . . . . . . . . 14  |-  (  +o  : ( On  X.  On ) --> On  <->  (  +o  Fn  ( On  X.  On )  /\  A. x  e.  On  A. y  e.  On  ( x  +o  y )  e.  On ) )
1915, 17, 18mpbir2an 911 . . . . . . . . . . . . 13  |-  +o  :
( On  X.  On )
--> On
2019, 9f0cli 5939 . . . . . . . . . . . 12  |-  (  +o 
`  <. C ,  D >. )  e.  On
2114, 20eqeltri 2532 . . . . . . . . . . 11  |-  ( C  +o  D )  e.  On
2221rgen2w 2870 . . . . . . . . . 10  |-  A. k  e.  A  A. z  e.  B  ( C  +o  D )  e.  On
23 eqid 2450 . . . . . . . . . . 11  |-  ( k  e.  A ,  z  e.  B  |->  ( C  +o  D ) )  =  ( k  e.  A ,  z  e.  B  |->  ( C  +o  D ) )
2423fmpt2 6727 . . . . . . . . . 10  |-  ( A. k  e.  A  A. z  e.  B  ( C  +o  D )  e.  On  <->  ( k  e.  A ,  z  e.  B  |->  ( C  +o  D ) ) : ( A  X.  B
) --> On )
2522, 24mpbi 208 . . . . . . . . 9  |-  ( k  e.  A ,  z  e.  B  |->  ( C  +o  D ) ) : ( A  X.  B ) --> On
2625, 9f0cli 5939 . . . . . . . 8  |-  ( ( k  e.  A , 
z  e.  B  |->  ( C  +o  D ) ) `  <. y ,  ( F `  y ) >. )  e.  On
2713, 26syl6eqel 2544 . . . . . . 7  |-  ( y  e.  om  ->  ( F `  suc  y )  e.  On )
28 fveq2 5775 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( F `  x
)  =  ( F `
 suc  y )
)
2928eleq1d 2518 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( F `  x )  e.  On  <->  ( F `  suc  y
)  e.  On ) )
3027, 29syl5ibrcom 222 . . . . . 6  |-  ( y  e.  om  ->  (
x  =  suc  y  ->  ( F `  x
)  e.  On ) )
3130rexlimiv 2917 . . . . 5  |-  ( E. y  e.  om  x  =  suc  y  ->  ( F `  x )  e.  On )
3210, 31jaoi 379 . . . 4  |-  ( ( x  =  (/)  \/  E. y  e.  om  x  =  suc  y )  -> 
( F `  x
)  e.  On )
333, 32syl 16 . . 3  |-  ( x  e.  om  ->  ( F `  x )  e.  On )
3433rgen 2867 . 2  |-  A. x  e.  om  ( F `  x )  e.  On
35 ffnfv 5954 . 2  |-  ( F : om --> On  <->  ( F  Fn  om  /\  A. x  e.  om  ( F `  x )  e.  On ) )
362, 34, 35mpbir2an 911 1  |-  F : om
--> On
Colors of variables: wff setvar class
Syntax hints:    \/ wo 368    = wceq 1370    e. wcel 1757   A.wral 2792   E.wrex 2793   _Vcvv 3054   (/)c0 3721   <.cop 3967   Oncon0 4803   suc csuc 4805    X. cxp 4922    Fn wfn 5497   -->wf 5498   ` cfv 5502  (class class class)co 6176    |-> cmpt2 6178   omcom 6562  seq𝜔cseqom 6988    +o coa 7003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-tr 4470  df-eprel 4716  df-id 4720  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-om 6563  df-1st 6663  df-2nd 6664  df-recs 6918  df-rdg 6952  df-seqom 6989  df-oadd 7010
This theorem is referenced by:  cantnfval2  7964  cantnfle  7966  cantnflt  7967  cantnflem1d  7983  cantnflem1  7984  cantnfval2OLD  7994  cantnfleOLD  7996  cantnfltOLD  7997  cantnflem1dOLD  8006  cantnflem1OLD  8007  cnfcomlem  8019  cnfcomlemOLD  8027
  Copyright terms: Public domain W3C validator