MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval2OLD Structured version   Unicode version

Theorem cantnfval2OLD 8150
Description: Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) Obsolete version of cantnfval2 8120 as of 28-Jun-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
cantnfsOLD.1  |-  S  =  dom  ( A CNF  B
)
cantnfsOLD.2  |-  ( ph  ->  A  e.  On )
cantnfsOLD.3  |-  ( ph  ->  B  e.  On )
cantnfvalOLD.3  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cantnfvalOLD.4  |-  ( ph  ->  F  e.  S )
cantnfvalOLD.5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
Assertion
Ref Expression
cantnfval2OLD  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  G ) )
Distinct variable groups:    z, k, B    A, k, z    k, F, z    S, k, z   
k, G, z    ph, k,
z
Allowed substitution hints:    H( z, k)

Proof of Theorem cantnfval2OLD
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfsOLD.1 . . 3  |-  S  =  dom  ( A CNF  B
)
2 cantnfsOLD.2 . . 3  |-  ( ph  ->  A  e.  On )
3 cantnfsOLD.3 . . 3  |-  ( ph  ->  B  e.  On )
4 cantnfvalOLD.3 . . 3  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
5 cantnfvalOLD.4 . . 3  |-  ( ph  ->  F  e.  S )
6 cantnfvalOLD.5 . . 3  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
71, 2, 3, 4, 5, 6cantnfvalOLD 8149 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
8 ssid 3461 . . 3  |-  dom  G  C_ 
dom  G
91, 2, 3, 4, 5cantnfclOLD 8148 . . . . 5  |-  ( ph  ->  (  _E  We  ( `' F " ( _V 
\  1o ) )  /\  dom  G  e. 
om ) )
109simprd 461 . . . 4  |-  ( ph  ->  dom  G  e.  om )
11 sseq1 3463 . . . . . . 7  |-  ( u  =  (/)  ->  ( u 
C_  dom  G  <->  (/)  C_  dom  G ) )
12 fveq2 5849 . . . . . . . . 9  |-  ( u  =  (/)  ->  ( H `
 u )  =  ( H `  (/) ) )
13 0ex 4526 . . . . . . . . . 10  |-  (/)  e.  _V
146seqom0g 7158 . . . . . . . . . 10  |-  ( (/)  e.  _V  ->  ( H `  (/) )  =  (/) )
1513, 14ax-mp 5 . . . . . . . . 9  |-  ( H `
 (/) )  =  (/)
1612, 15syl6eq 2459 . . . . . . . 8  |-  ( u  =  (/)  ->  ( H `
 u )  =  (/) )
17 fveq2 5849 . . . . . . . . 9  |-  ( u  =  (/)  ->  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) ) )
18 eqid 2402 . . . . . . . . . . 11  |- seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
1918seqom0g 7158 . . . . . . . . . 10  |-  ( (/)  e.  _V  ->  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  (/) )  =  (/) )
2013, 19ax-mp 5 . . . . . . . . 9  |-  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  (/) )  =  (/)
2117, 20syl6eq 2459 . . . . . . . 8  |-  ( u  =  (/)  ->  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )  =  (/) )
2216, 21eqeq12d 2424 . . . . . . 7  |-  ( u  =  (/)  ->  ( ( H `  u )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  u
)  <->  (/)  =  (/) ) )
2311, 22imbi12d 318 . . . . . 6  |-  ( u  =  (/)  ->  ( ( u  C_  dom  G  -> 
( H `  u
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
)  <->  ( (/)  C_  dom  G  ->  (/)  =  (/) ) ) )
2423imbi2d 314 . . . . 5  |-  ( u  =  (/)  ->  ( (
ph  ->  ( u  C_  dom  G  ->  ( H `  u )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
) )  <->  ( ph  ->  ( (/)  C_  dom  G  -> 
(/)  =  (/) ) ) ) )
25 sseq1 3463 . . . . . . 7  |-  ( u  =  v  ->  (
u  C_  dom  G  <->  v  C_  dom  G ) )
26 fveq2 5849 . . . . . . . 8  |-  ( u  =  v  ->  ( H `  u )  =  ( H `  v ) )
27 fveq2 5849 . . . . . . . 8  |-  ( u  =  v  ->  (seq𝜔 (
( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) )
2826, 27eqeq12d 2424 . . . . . . 7  |-  ( u  =  v  ->  (
( H `  u
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )  <->  ( H `  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) ) )
2925, 28imbi12d 318 . . . . . 6  |-  ( u  =  v  ->  (
( u  C_  dom  G  ->  ( H `  u )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
)  <->  ( v  C_  dom  G  ->  ( H `  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) ) )
3029imbi2d 314 . . . . 5  |-  ( u  =  v  ->  (
( ph  ->  ( u 
C_  dom  G  ->  ( H `  u )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  u
) ) )  <->  ( ph  ->  ( v  C_  dom  G  ->  ( H `  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) ) ) )
31 sseq1 3463 . . . . . . 7  |-  ( u  =  suc  v  -> 
( u  C_  dom  G  <->  suc  v  C_  dom  G
) )
32 fveq2 5849 . . . . . . . 8  |-  ( u  =  suc  v  -> 
( H `  u
)  =  ( H `
 suc  v )
)
33 fveq2 5849 . . . . . . . 8  |-  ( u  =  suc  v  -> 
(seq𝜔
( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  u
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) )
3432, 33eqeq12d 2424 . . . . . . 7  |-  ( u  =  suc  v  -> 
( ( H `  u )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )  <->  ( H `  suc  v
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) ) )
3531, 34imbi12d 318 . . . . . 6  |-  ( u  =  suc  v  -> 
( ( u  C_  dom  G  ->  ( H `  u )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
)  <->  ( suc  v  C_ 
dom  G  ->  ( H `
 suc  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  suc  v ) ) ) )
3635imbi2d 314 . . . . 5  |-  ( u  =  suc  v  -> 
( ( ph  ->  ( u  C_  dom  G  -> 
( H `  u
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
) )  <->  ( ph  ->  ( suc  v  C_  dom  G  ->  ( H `  suc  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  suc  v ) ) ) ) )
37 sseq1 3463 . . . . . . 7  |-  ( u  =  dom  G  -> 
( u  C_  dom  G  <->  dom  G  C_  dom  G ) )
38 fveq2 5849 . . . . . . . 8  |-  ( u  =  dom  G  -> 
( H `  u
)  =  ( H `
 dom  G )
)
39 fveq2 5849 . . . . . . . 8  |-  ( u  =  dom  G  -> 
(seq𝜔
( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  u
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  dom  G ) )
4038, 39eqeq12d 2424 . . . . . . 7  |-  ( u  =  dom  G  -> 
( ( H `  u )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )  <->  ( H `  dom  G
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  dom  G ) ) )
4137, 40imbi12d 318 . . . . . 6  |-  ( u  =  dom  G  -> 
( ( u  C_  dom  G  ->  ( H `  u )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
)  <->  ( dom  G  C_ 
dom  G  ->  ( H `
 dom  G )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  G ) ) ) )
4241imbi2d 314 . . . . 5  |-  ( u  =  dom  G  -> 
( ( ph  ->  ( u  C_  dom  G  -> 
( H `  u
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  u )
) )  <->  ( ph  ->  ( dom  G  C_  dom  G  ->  ( H `  dom  G )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  G ) ) ) ) )
43 eqid 2402 . . . . . 6  |-  (/)  =  (/)
4443a1ii 12 . . . . 5  |-  ( ph  ->  ( (/)  C_  dom  G  -> 
(/)  =  (/) ) )
45 sssucid 5487 . . . . . . . . . 10  |-  v  C_  suc  v
46 sstr 3450 . . . . . . . . . 10  |-  ( ( v  C_  suc  v  /\  suc  v  C_  dom  G
)  ->  v  C_  dom  G )
4745, 46mpan 668 . . . . . . . . 9  |-  ( suc  v  C_  dom  G  -> 
v  C_  dom  G )
4847imim1i 57 . . . . . . . 8  |-  ( ( v  C_  dom  G  -> 
( H `  v
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
)  ->  ( suc  v  C_  dom  G  -> 
( H `  v
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) )
49 oveq2 6286 . . . . . . . . . . 11  |-  ( ( H `  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
)  ->  ( v
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ( H `
 v ) )  =  ( v ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) ) )
506seqomsuc 7159 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  ( H `  suc  v )  =  ( v ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ( H `  v
) ) )
5150ad2antrl 726 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  ( H `  suc  v )  =  ( v ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ( H `
 v ) ) )
5218seqomsuc 7159 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (seq𝜔 (
( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v )  =  ( v ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) )
5352ad2antrl 726 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  suc  v )  =  ( v ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) ) )
54 ssv 3462 . . . . . . . . . . . . . . . 16  |-  dom  G  C_ 
_V
55 ssv 3462 . . . . . . . . . . . . . . . 16  |-  On  C_  _V
56 resmpt2 6381 . . . . . . . . . . . . . . . 16  |-  ( ( dom  G  C_  _V  /\  On  C_  _V )  ->  ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )  |`  ( dom  G  X.  On ) )  =  ( k  e.  dom  G , 
z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) )
5754, 55, 56mp2an 670 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  |`  ( dom  G  X.  On ) )  =  ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) )
5857oveqi 6291 . . . . . . . . . . . . . 14  |-  ( v ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )  |`  ( dom  G  X.  On ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) )  =  ( v ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) )
59 simprr 758 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  suc  v  C_  dom  G )
60 vex 3062 . . . . . . . . . . . . . . . . . 18  |-  v  e. 
_V
6160sucid 5489 . . . . . . . . . . . . . . . . 17  |-  v  e. 
suc  v
6261a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  v  e.  suc  v )
6359, 62sseldd 3443 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  v  e.  dom  G )
6418cantnfvalf 8116 . . . . . . . . . . . . . . . . 17  |- seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) : om --> On
6564ffvelrni 6008 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  (seq𝜔 (
( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )  e.  On )
6665ad2antrl 726 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
)  e.  On )
67 ovres 6423 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  dom  G  /\  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
)  e.  On )  ->  ( v ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) )  |`  ( dom  G  X.  On ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) )  =  ( v ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) )
6863, 66, 67syl2anc 659 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  ( v ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) )  |`  ( dom  G  X.  On ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) )  =  ( v ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) )
6958, 68syl5eqr 2457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  ( v ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
)  =  ( v ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) )
7053, 69eqtrd 2443 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  suc  v )  =  ( v ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
) )
7151, 70eqeq12d 2424 . . . . . . . . . . 11  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  ( ( H `
 suc  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  suc  v )  <->  ( v
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ( H `
 v ) )  =  ( v ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) ) ) )
7249, 71syl5ibr 221 . . . . . . . . . 10  |-  ( (
ph  /\  ( v  e.  om  /\  suc  v  C_ 
dom  G ) )  ->  ( ( H `
 v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
)  ->  ( H `  suc  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  suc  v ) ) )
7372expr 613 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  om )  ->  ( suc  v  C_  dom  G  -> 
( ( H `  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )  ->  ( H `  suc  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) ) ) )
7473a2d 26 . . . . . . . 8  |-  ( (
ph  /\  v  e.  om )  ->  ( ( suc  v  C_  dom  G  ->  ( H `  v
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
)  ->  ( suc  v  C_  dom  G  -> 
( H `  suc  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) ) ) )
7548, 74syl5 30 . . . . . . 7  |-  ( (
ph  /\  v  e.  om )  ->  ( (
v  C_  dom  G  -> 
( H `  v
)  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  v )
)  ->  ( suc  v  C_  dom  G  -> 
( H `  suc  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) ) ) )
7675expcom 433 . . . . . 6  |-  ( v  e.  om  ->  ( ph  ->  ( ( v 
C_  dom  G  ->  ( H `  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) )  ->  ( suc  v  C_  dom  G  ->  ( H `  suc  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) ) ) ) )
7776a2d 26 . . . . 5  |-  ( v  e.  om  ->  (
( ph  ->  ( v 
C_  dom  G  ->  ( H `  v )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  v
) ) )  -> 
( ph  ->  ( suc  v  C_  dom  G  -> 
( H `  suc  v )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  suc  v ) ) ) ) )
7824, 30, 36, 42, 44, 77finds 6710 . . . 4  |-  ( dom 
G  e.  om  ->  (
ph  ->  ( dom  G  C_ 
dom  G  ->  ( H `
 dom  G )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  G ) ) ) )
7910, 78mpcom 34 . . 3  |-  ( ph  ->  ( dom  G  C_  dom  G  ->  ( H `  dom  G )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  G ) ) )
808, 79mpi 20 . 2  |-  ( ph  ->  ( H `  dom  G )  =  (seq𝜔 ( ( k  e.  dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) ) `  dom  G ) )
817, 80eqtrd 2443 1  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  (seq𝜔 ( ( k  e. 
dom  G ,  z  e.  On  |->  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) ) ,  (/) ) `  dom  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3059    \ cdif 3411    C_ wss 3414   (/)c0 3738    _E cep 4732    We wwe 4781    X. cxp 4821   `'ccnv 4822   dom cdm 4823    |` cres 4825   "cima 4826   Oncon0 5410   suc csuc 5412   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280   omcom 6683  seq𝜔cseqom 7149   1oc1o 7160    +o coa 7164    .o comu 7165    ^o coe 7166  OrdIsocoi 7968   CNF ccnf 8110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-seqom 7150  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-oi 7969  df-cnf 8111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator